Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Bảo Nam
Xem chi tiết
phương
22 tháng 12 2022 lúc 21:19

D

Ngô Nhật Minh
22 tháng 12 2022 lúc 21:20

D nha

Vũ Tiến Dũng
22 tháng 12 2022 lúc 21:25

d

hoàng khánh linh
Xem chi tiết
Toán học is my best:))
9 tháng 8 2019 lúc 12:06

bài 1:

ssh của A là:

(151-3):2+1=75

A=(151+3)x75:2=5775

đáp số: 5775

Dương Thanh Ngân
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2020 lúc 17:23

Áp dụng bài vừa chứng minh bên dưới :D

\(\Rightarrow P=2021\)

Hoàng Bảo Ngọc
Xem chi tiết
Citii?
2 tháng 12 2023 lúc 20:41

A = B

Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 22:07

a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)

Dấu '=' xảy ra khi x=-5

Chanhh
Xem chi tiết
ILoveMath
28 tháng 12 2021 lúc 14:59

B

Kim Taehyung
Xem chi tiết
💋Bevis💋
12 tháng 7 2019 lúc 7:55

Ta có: \(2021^2=\left(2020+1\right)^2=2020^2+2.2020.1+1^2\)

\(\Rightarrow1+2020^2=2021^2-2.2020\)

\(\Rightarrow\sqrt{1+2020^2+\frac{2020^2}{2021}}+\frac{2020}{2021}\)

\(=\sqrt{2021^2-2.2020+\frac{2020^2}{2021}}+\frac{2020}{2021}\)

\(=\sqrt{2021^2-2.2021.\frac{2020}{2021}+\left(\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

\(=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

\(=2021-\frac{2020}{2021}+\frac{2020}{2021}=2021\)

Trọng Nguyễn
Xem chi tiết
ILoveMath
11 tháng 11 2021 lúc 14:18

A

Nguyễn Ngọc Anh
Xem chi tiết
Upin & Ipin
19 tháng 8 2020 lúc 16:39

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 13:17

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 13:18

Phần b mượn bài Upin ta có:

\(P=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

\(P=2020+1\)

\(P=2021\)

Khách vãng lai đã xóa