so sánh \(\frac{10^{99}+1}{10^{98}+1}\)va \(\frac{10^{98}+1}{10^{97}+1}\)
so sánh :\(A=\frac{10^{97}+1}{10^{98}+1}vaB=\frac{10^{96}+1}{10^{97}+1}\)
mong các bạn trình bày giúp mình
Ta có:A= \(\frac{10^{97}+1}{10^{98}+1}=10\cdot\left(\frac{10^{97}+1}{10^{98}+1}\right)=\frac{10^{98}+10}{10^{98}+1}\)=\(\frac{10^{98}+1+9}{10^{98}+1}\)=\(\frac{9}{10^{98}+1}+1\)
B=\(\frac{10^{96}+1}{10^{97}+1}=10\cdot\left(\frac{10^{96}+1}{10^{97}+1}\right)=\frac{10^{97}+10}{10^{97}+1}\)=\(\frac{10^{97}+1+9}{10^{97}+1}\)=\(\frac{9}{10^{97}+1}+1\)
Vì \(\frac{9}{10^{98}+1}+1\)< \(\frac{9}{10^{97}+1}+1\)\(\left(10^{98}+1>10^{97}+1\right)\)
Nên A<B
So sánh
C= \(\frac{98^{99}+1}{98^{89}+1}\)
D=\(\frac{98^{98}+1}{98^{88}+1}\)
Giải theo cách tính \(\frac{1}{98^{10}}C\)và \(\frac{1}{98^{10}}D\)
so sánh :
\(A=\frac{10^{100}-1}{10^{98}-1}\) và \(B=\frac{10^{101}-1}{10^{99}-1}\)
Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)
\(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)
\(=10^2+\frac{99}{10^{98}-1}\)
B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)
\(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)
\(=10^2+\frac{99}{10^{99}-1}\)
Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B
Vậy A > B
So sánh hai phân số sau:
a)\(\frac{7}{15}và\frac{4}{9}\)
b)\(\frac{2001}{2002}và\frac{2000}{2001}\)
c)\(\left(\frac{1}{80}\right)^7và\left(\frac{1}{243}\right)^6\)
d)\(\left(\frac{3}{8}\right)^5và\left(\frac{5}{243}\right)^3\)
e) A=\(\frac{2011}{2012}+\frac{2012}{2013}\)Và B= \(\frac{2011+2012}{2012+2013}\)
f) \(C=\frac{20^{10}+1}{20^{10}-1}VàD=\frac{20^{10}-1}{20^{10}-3}\)
g) G =\(\frac{10^{100}+2}{10^{100}-1}\)Và H = \(\frac{10^8}{10^8-3}\)
h) E = \(\frac{98^{99}+1}{98^{89}+1}\) Và F =\(\frac{98^{98}+1}{98^{88}+1}\)
Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!
So sánh:
a, \(A=\frac{9^{99}+1}{9^{100}+1};B=\frac{10^{98}-1}{10^{99}-1}\)
b, \(A=\frac{5^{10}}{1+5+5^2+....+5^9};B=\frac{6^{10}}{1+6+6^2+....+6^9}\)
Giúp mk nhé! Ai làm nhanh nhất và hết mk tick cho.
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
A=10^99+1 / 10^89+1
B= 10^98+1 / 10^88+1
So sánh A và B
Tính chất nếu:
\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)
\(A>\dfrac{10^{99}+10}{10^{89}+10}\)
\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)
\(A>\dfrac{10^{98}+1}{10^{88}+1}\)
\(A>B\)
\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)
Vậy \(A< B\)
so sánh
\(\frac{9^{99}+1}{-9^{98-1}}+\frac{-9^{98}-1}{9^{97+1}}\)
So sánh
A=97^98+1/ 97^99+1 va B=97^97+1/ 97^98+1
Ta có: \(A=\frac{97^{98}+1}{97^{99}+1}\Rightarrow97A=\frac{97^{99}+97}{97^{99}+1}=\frac{97^{99}+1+96}{97^{99}+1}=1+\frac{96}{97^{99}+1}\)
\(B=\frac{97^{97}+1}{97^{98}+1}\Rightarrow97B=\frac{97^{98}+97}{97^{98}+1}=\frac{97^{98}+1+96}{97^{98}+1}=1+\frac{96}{97^{98}+1}\)
Vì \(\frac{96}{97^{99}+1}< \frac{96}{97^{98}+1}\Rightarrow1+\frac{96}{97^{99}+1}< 1+\frac{96}{97^{98}+1}\Rightarrow97A< 97B\Rightarrow A< B\)
Vậy A < B
Ta thấy A < 1 và 96 > 1 nên ta có:
A < 9798 + 1 + 96 / 9799 + 1 + 96
=> A < 9798 + 97 / 9799 + 97
=> A < 97(9797 + 1) / 97(9798 + 1)
=> A < 9797 + 1 / 9798 + 1 = B
=> A < B
\(\frac{9^{99}-1}{-9^{98}+1}và\frac{-9^{98}-1}{9^{97+1}}\)
so sánh
\(\frac{9^{99}-1}{-9^{98}+1}\) < \(\frac{-9^{98}-1}{9^{97+1}}\)