1)11-12+13-14+15-16+17-18+19-20+21-22+.........+99-100
2)2-4+6-8+......+1998-2000
3)-1+3-5+7-....+97-99
4)1+2-3-4+.........+97+98-99-100
5)1-2+3-4+.............+99-100
6)1+3-5-7+......+97-98-99+100
7)2100-299-298-..........22-2-1
8)1-4+7-10+........+307-310+313
\(\frac{x+1}{97}+\frac{x+1}{98}=\frac{x+1}{99}+\frac{x+1}{100}\)
Cho A=\(\frac{10^{11}-1}{10^{12}-1}\)va B=\(\frac{10^{10}+1}{10^{11}+1}\)
So sanh A va B
Chứng minh 25(6^99+6^98+6^97+...+6^2+6+1)+5:6^10
7+7^2+7^3+..+7^4n (n thuộc N*
so sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}\)\(\)va \(10\)
Rút gọn
\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(\frac{10}{1+\sqrt{4}}+\frac{10}{\sqrt{4}+\sqrt{7}}+\frac{10}{\sqrt{7}+\sqrt{10}}+...+\frac{10}{\sqrt{97}+\sqrt{100}}\)
Giải phương trình
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\)= -4
Thực hiện phép tính: \(\left(\sqrt{4,5}-\frac{1}{2}\sqrt{72}+5\sqrt{\frac{1}{2}}\right)\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)