tìm x , y biết
x(x+y)-xy(x+y)tại x=1và y=-5;
Cho xy=1và x;y>0. Tìm GTLN của:
\(A=\frac{1}{x^2+y^4}+\frac{1}{x^4+y^2}\)
\(A=\frac{x^2y^2}{x^2.xy+y^4}+\frac{x^2y^2}{x^4+xy.y^2}=\frac{\left(\frac{x}{y}\right)^2}{\left(\frac{x}{y}\right)^3+1}+\frac{\left(\frac{x}{y}\right)^2}{\frac{x}{y}.\left[\left(\frac{x}{y}\right)^3+1\right]}\)
\(=\frac{t^2}{t^3+1}+\frac{t^2}{t\left(t^3+1\right)}\text{ }\left(t=\frac{x}{y}>0\right)\)
\(=\left(\frac{t^2+t}{t^3+1}-1\right)+1=-\frac{\left(t-1\right)^2\left(t+1\right)}{t^3+1}+1\le1\forall t>0\)
Đẳng thức xảy ra khi \(t=1\Leftrightarrow x=y=1.\)
Vậy GTLN của A là 1.
\(A=\frac{1}{x^2+\frac{1}{x^4}}+\frac{1}{x^4+\frac{1}{x^2}}\)
Áp dụng BĐT côsi
\(x^2+\frac{1}{x^4}\ge\frac{2}{x}\)
\(x^4+\frac{1}{x^2}\ge2x\)
=>\(A\le\frac{x}{2}+\frac{1}{2x}\)
Áp dụng BĐT cosi
\(\frac{x}{2}+\frac{1}{2x}\ge2\sqrt{\frac{x}{4x}}=1\)
Dấu = xảy ra <=>x=y=1
Chắc chắn 100% nha
Tick đi nào ae
BT1: Tính giá trị của biểu thức sau
a, A=5x(4x2-2x+1)-2x.(10x2-5x-2) Tại x=15
b, B= 6xy (xy-y2)-8x2(x-y2)+5y2(x2-xy) Tại x=-1;y=2
c, C= (x-3).(x+7)-(2x-5).(x-1) Tại x=-1
d, D=(3x+5).(2x-1)+(4x-1).(3x+2)-(x-2).(2x+5) Tại x=-2
Tìm các số nguyên x; y biết rằng:
a) xy + x + y = 2
b) (x + 1).y + 2 = -5 , (x < y)
a) \(xy+x+y=2\)
\(xy+x+y+1=2+1\)
\(\left(xy+x\right)+\left(y+1\right)=3\)
\(x\left(y+1\right)+\left(y+1\right)=3\)
\(\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-3;-1;1;3\right\}\\y+1\in\left\{-1;-3;3;1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-4;-2;0;2\right\}\\y\in\left\{-2;-4;2;0\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\)
b) \(\left(x+1\right).y+2=-5\)
\(\left(x+1\right).y=-5-2\)
\(\left(x+1\right).y=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-7;-1;1;7\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2;0;6\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
Mà \(x< y\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2\right\}\\y\in\left\{1;7\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-8;1\right);\left(-2;7\right)\)
a) Tìm giá trị của x + y biết x - y = 2 , xy = 99 và y < 0
b) Giá trị của x + y biết x - y = 4 , xy = 5 và x < 0
HD:
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20
tu x-y=4 suy ra y=x-4
thay vao xy=5suy ra x(x-4)=5
\(\Rightarrow\) x^2-4x+4=9
\(\Rightarrow\)(x-2)^2=9
\(\Rightarrow\) x-2=+-3
vi x<0 \(\Rightarrow\) x=-3+2=-1
\(\Rightarrow\)y=x-4=-1-4=-5
\(\Rightarrow\) x+y=-1+-5=-6
Tìm các số nguyên x; y biết rằng:
a) xy + x + y = 2
b) (x + 1).y + 2 = -5 , (x < y)
xy+x-y=4
x(y+1)-y=4
x(y+1)-y-1=3
x(y+1)-(y+1)=3
(x-1)(y+1)=3
Vì x;y là số nguyên => x-1;y+1 là số nguyên
=> x-1;y+1 E Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 2 | 0 | -4 |
-2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;2);(4;0);(0;-4);(-2;-2).
Cái này mik tìm thấy nek, dạng bài giống ý a)
tìm x,y biết x^4+y^6+89=x^5-y^7+xy-x^9
Tìm x,y biết : 5x-17y=2xy và x-y=5; 2x+3y=xy
tìm x,y (x,y thuộc Z) biết x2y-xy-5x+5=5
a)Tìm x,y thuộc z biết rằng (y+1).(xy-1)=3
b)tìm các số x,y,z biết rằng x+y=2 ;y+z=3 ;z+x=-5