Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Việt
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 22:43

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Đức Lộc
Xem chi tiết
Agatsuma Zenitsu
29 tháng 1 2020 lúc 0:15

Ta có: \(ab+bc+ca=abc\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)

\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)

Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Chứng minh tương tự ta được:

\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)

Cộng vế với vế:

\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
 ☘ Nhạt ☘
Xem chi tiết
Trần Phúc Khang
13 tháng 11 2019 lúc 5:41

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 2 2020 lúc 9:27

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

Khách vãng lai đã xóa
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Đen đủi mất cái nik
9 tháng 9 2018 lúc 21:26

TA CÓ:

\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)

\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)

ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)

\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)

TA CẦN C/M:

\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)        \(\left(=2abc\left(a+b+c\right)\right)\)

ÁP DỤNG BĐT BUNHIA TA CÓ:

\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)

VẬY CẦN C/M:

\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)

XÉT HIỆU:

\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)

\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)

VÌ:

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)

\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)

\(\Rightarrow DPCM\)

Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b

Không Tên
26 tháng 2 2020 lúc 16:13

Giả sử \(c=min\left\{a,b,c\right\}\)

Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)

Khách vãng lai đã xóa
Kurosaki Akatsu
Xem chi tiết
Thắng Nguyễn
25 tháng 6 2017 lúc 21:20

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

alibaba nguyễn
26 tháng 6 2017 lúc 9:25

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

Trần Lê Nguyên Mạnh
Xem chi tiết
Tran Le Khanh Linh
25 tháng 8 2020 lúc 15:41

Từ giả thiết a+b+c=1 suy ra: c=1-a-b, thay vào bất đẳng thức ta được

(3a+4b+5-5a-5b)2\(\ge\)44ab+44(a+b)(1-a-b)

<=> 48a2+16(3b-4)a+45b2-54b+25\(\ge0\)

Xét \(f\left(a\right)=48a^2+16\left(3b-4\right)a+45b^2-54b+25\), khi đó ta được

\(\Delta'=64\left(3b-4\right)^2-48\left(45b^2-54b+25\right)=-176\left(3b^2-1\right)\le0\)

Do đó suy ra: f(a) \(\ge\)0 hay 48a2+16(3a-4)a+45b2-54b+25\(\ge\)0

Dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2};b=\frac{1}{3};c=\frac{1}{6}\)

Khách vãng lai đã xóa
Ngự thủy sư
Xem chi tiết
Trần Phúc Khang
29 tháng 5 2019 lúc 16:11

Theo đề bài ta có

\(a\left(1-a\right)\left(1-b\right)\ge0\)=> \(a^2b\ge a^2+ab-a\)

\(b\left(1-c\right)\left(1-b\right)\ge0\)=> \(b^2c\ge b^2+bc-b\)

Tương tự \(c^2a\ge c^2+ac-c\)

Khi đó

\(VT\ge a^2+b^2+c^2+2ab+2bc+2ac-\left(a+b+c\right)=2^2-2=2\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=1,c=0\)và các hoán vị

Minh Quân Nguyễn Huy
Xem chi tiết
Con Chim 7 Màu
26 tháng 5 2019 lúc 10:57

\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\) 

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\) 

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)

Từ (1) và (2) suy ra:

\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

:))

cao van duc
26 tháng 5 2019 lúc 11:04

ở phần cô si phần cuối là bn sai r

vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng

đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/

em nhỏ 5 tuổi
27 tháng 5 2019 lúc 19:01

Em không chắc đâu nha....Em mới học BĐT nên còn khá ngu về phần này,xin được chỉ giáo thêm ạ! :D

Biển đổi P trở thành\(P=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (như a/c Con Chim 7 Màu gì đó)

\(=\left(\frac{a^2+b^2+c^2}{ab+bc+ca}-1\right)+\left(\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)-1+2\)

\(=\frac{2\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\)

Để cho gọn,ta đặt \(P=S_c\left(a-b\right)^2+S_b\left(c-a\right)^2+S_a\left(b-c\right)^2+2\) 

Với \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\) (như trên)

\(S_a=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

\(S_b=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

Ta đi chứng minh: \(S_a;S_b;S_c\ge0\).Thật vậy,xét Sc:

Ta chứng minh \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\left(ab+bc+ca\right)\) (biến đổi làm cho 2 vế đồng bậc)

Chuyển vế qua ta cần chứng minh \(ab\left(a+b\right)+bc\left(b-c\right)+ca\left(a-c\right)\ge0\) (1)

Giả sử \(a\ge b\ge c\Rightarrow\)BĐT (1) đúng nên \(S_c\ge0\)

Do tính đối xứng của P nên ta cũng có \(S_b;S_c\ge0\)

Từ đây suy ra \(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\ge2\left(đpcm\right)\)

Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 11:34

Tách biểu thức như sau:

\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)

Trần Tuấn Hoàng
14 tháng 5 2023 lúc 12:06
(Nháp)\(a+2b+3c=20\)Với các tham số \(0< x,y,z< 1\) ta có:\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)\(=xa+yb+zc+\left(\dfrac{3}{a}+\left(1-x\right)a\right)+\left(\dfrac{9}{2b}+\left(1-y\right)b\right)+\left(\dfrac{4}{c}+\left(1-z\right)c\right)\)\(\ge^{Cauchy}xa+yb+zc+2\left(\sqrt{3\left(1-x\right)}+\sqrt{\dfrac{9\left(1-y\right)}{2}}+\sqrt{4\left(1-z\right)}\right)\)Chọn các tham số x,y,z (0<x,y,z<1) sao cho:\(\left\{{}\begin{matrix}x=\dfrac{y}{2}=\dfrac{z}{3}\\\dfrac{3}{a}=\left(1-x\right)a\\\dfrac{9}{2b}=\left(1-y\right)b\\\dfrac{4}{c}=\left(1-z\right)c\end{matrix}\right.\) và \(a+2b+3c=20\) \(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-y\right)}}\\c=\sqrt{\dfrac{4}{1-z}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-2x\right)}}\\c=\sqrt{\dfrac{4}{1-3x}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\sqrt{\dfrac{3}{1-x}}+2\sqrt{\dfrac{9}{2\left(1-2x\right)}}+3\sqrt{\dfrac{4}{1-3x}}=20\)Bấm máy ta được \(x=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{2};z=\dfrac{3}{4}\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{1-\dfrac{1}{4}}}=2\\b=\sqrt{\dfrac{9}{2\left(1-2.\dfrac{1}{4}\right)}}=3\\c=\sqrt{\dfrac{4}{1-3.\dfrac{1}{4}}}=4\end{matrix}\right.\)