giải phương trình nghiệm nguyên x^2+2y^2+2z^2-2xy-2yz-2z=4
a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)
Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH
Làm tiếp nhé!
b) Ta có: \(x^2+13y^2-6xy=100\)
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)
Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)
\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)
Ta có các TH sau:
Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)
Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)
... Tự làm tiếp nhé
\(x^2+2y^2+2z^2-2xy-2yz+6z=9\) 9 tìm nghiệm nguyên
tìm nghiệm nguyên
a)x2 + 2y2 +2z2 -2xy -2yz- 2z =a
b) x2 + y2 + z2 = xy+ 3y + 2z- 4
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
giải phương trình nghiệm nguyên \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)
Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)
Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)
\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)
\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)
Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\), \(\left(\sqrt{2y-2}-2\right)^2\ge0\), \(\left(\sqrt{4z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)
Vậy (x;y;z) = (1;3;3)
Cho 2x^2 + 2y^2 + 2z^2 + 2xy + 2yz +2xz +10x +6y +34 =0 Tìm x, y,z
Ta có:
\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)
Không tồn tại x,y,z thỏa mãn đề bài
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^5=x^4-2x^2y+2\\y^5=y^4-2y^2z+2\\z^5=z^4-2z^2x+2\end{matrix}\right.\)
BÀI 8: THU GỌN VÀ TÌM BẬC CỦA MỖI ĐA THỨC:
A= -2xy + 3/2xy^2 + 1/2xy^2 + xy
B= xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z
C= 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3
D= 3/4xy^2 - 2xy - 1/2xy^2 + 3xy
E= 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4
F= 3xy^2z + xy^2z - xyz + 2xy^2z -3xyz
0,2:x=1,03+3,97
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
Giải hệ phương trình ba ẩn số thực x,y,z:
\(\left\{{}\begin{matrix}x^3+2y^3=2x^2+z^2\\2x^3+3x^2=3y^3+2z^2+7\\x^3+x^2+y^2+2xy=2xz+2yz+2\end{matrix}\right.\)
Lấy pt 2 trừ 2 lần pt 1:
\(3x^2-4y^3=3y^3-4x^2+7\Leftrightarrow y^3=x^2-1\)
Lấy pt 2 trừ 2 lần pt 3:
\(x^2-2y^2-4xy=3y^3+2z^2+7-4xz-4yz-4\)
\(\Leftrightarrow x^2-2y^2-4xy=3\left(x^2-1\right)+2z^2+7-4xz-4yz-4\)
\(\Leftrightarrow x^2+y^2+z^2+2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x+y-z\right)^2=0\)
\(\Leftrightarrow x+y=z\)
Hy vọng nó giúp được bạn
Akai Haruma giúp em bày này với ạ
@Nguyễn Việt Lâm em giải mãi ko ra nên đành nhờ anh giúp vậy