giải hệ phương trình
\(\left\{{}\begin{matrix}x^3-3x^2+2=\sqrt{y^3+3y^2}\\\sqrt{-14x+2y+48}+5=x+\sqrt{x-3}\end{matrix}\right.\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(\sqrt{x+1}-1\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{x}\\2x^3\left(y^2+1\right)-\left(x+1\right)y=2\end{matrix}\right.\)
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
mọi người giải giúp em hệ này bằng phương pháp hàm số với!!!
\(\left\{{}\begin{matrix}y^3\left(3x^2+2x-1\right)+4y=8\\y^2x^3+4y^2x-6y+5y^2=4\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x+2}+\sqrt{y+2}=4\\\sqrt{x+7}+\sqrt{y+7}=6\end{matrix}\right.\)
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
Xét vị trí tương đối của mp x-2y-2z+1=0 và mặt cầu x^2+y^2 -2x+4y+8z-4=0
cho x,y là các số thực dương thỏa mãn: 1≤x≤2, 1≤y≤2. Tìm giá trị nhỏ nhất.
P=\(\dfrac{x+2y}{x^2+3y+5}+\dfrac{y+2x}{y^2+3x+5}+\dfrac{1}{4\left(x+y-1\right)}\)
Cho đường thẳng d x+1/2=y-1/1=z/-1 d' x-1/-2=y+1/3=z-2/1 Và mp 2x+y-2z+5 =0. Viết pt đường thẳng đenta nằm trong mp cắt tất cả d và d'