Lời giải:
Đặt \(\left\{\begin{matrix} \sqrt{x+2}=a\\ \sqrt{y+2}=b\end{matrix}\right.\). HPT tương đương:
\(\left\{\begin{matrix} a+b=4(1)\\ \sqrt{a^2+5}+\sqrt{b^2+5}=6\end{matrix}\right.\)
Áp dụng BĐT Mincopxky:
\(\sqrt{a^2+5}+\sqrt{b^2+5}=\sqrt{a^2+(\sqrt{5})^2}+\sqrt{b^2+(\sqrt{5})^2}\geq \sqrt{(a+b)^2+(\sqrt{5}+\sqrt{5})^2}\)
\(\Leftrightarrow \sqrt{a^2+5}+\sqrt{b^2+5}\geq \sqrt{4^2+20}=6\)
Dấu bằng xảy ra khi \(\frac{a}{\sqrt{5}}=\frac{b}{\sqrt{5}}\Leftrightarrow a=b\)
Kết hợp với \((1)\Rightarrow a=b=2\Leftrightarrow \sqrt{x+2}=\sqrt{y+2}=2\Leftrightarrow x=y=2\)
Vậy \(x=y=2\)