giúp em với
chứng minh rằng : \(\frac{51.51.52.....100}{2^{50}}=1.3.5.7....99\)
CHỨNG MINH 51.51.52.,,,.100/2 mũ 50 =1.3.5.7.,,,.99
GIÚP MÌNH VỚI !!!!!
ghi đề lại xem cái nào chả hiểu gì
https://hoidap247.com/cau-hoi/905549
HỌC TỐT
Chứng minh
\(1.3.5.7...99=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
\(1.3.....99=\frac{1.3....99.2.4.6....100}{2.4.6....100}\)
\(=\frac{1.2.3.4.5......99.100}{2^{50}.\left(1.2.3....50\right)}\)
\(=\frac{51.52.53...100}{2.2.2...2}\)
\(=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)
\(\Rightarrow1.3...99=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\left(đpcm\right)\)
Ta có :\(\frac{51}{2}\) . \(\frac{52}{2}\) .... \(\frac{100}{2}\)
=\(\frac{51.52....100}{2.2....2}\)
=\(\frac{51.52....100}{2.2....2}\) . \(\frac{2.4.6....100}{2.4.6....100}\)
=\(\frac{51.52....100.2.4.6...100}{2.4.6...100.2.2...2}\)
=\(\frac{1.2.3.4...100}{2.4.6...100}\)
=\(\frac{\left[1.3.5....99\right].\left[2.4.6...100\right]}{2.4.6...100}\)
=1.3.5...99[đpcm]
So sánh:
\(C=1.3.5.7...99\) Với \(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
..............................GIÚP MK VỚI .......................
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,AI LÀM ĐÚNG MK TICK CHO,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
\(\Rightarrow\)C=\(\frac{\text{1.2.3.4...99.100}}{\text{2.4.6....100}}\)
\(\Rightarrow\)C=\(\frac{\text{1.2.3...99.100}}{(2.2....2)(1.2.3.4.5....50)}\) [50 chữ số 2]
\(\Rightarrow\)C=\(\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)=D
vậy C=D
Mk thấy khó hiểu , bn có thể chỉ kĩ hơn đc ko.
#)Giải :
Ta có :
\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
\(D=\frac{51.52.53.....100}{2^{50}}\)
\(D=\frac{\left(51.52.53.....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(D=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right).....\left(2.50\right)}\)
\(D=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....100}\)
\(D=1.3.5.....99=C\)
\(\Rightarrow C=D\)
#~Will~be~Pens~#
Chứng minh rằng: \(\frac{51.52.53...100}{2^{50}}=1.3.5...99\).
Ta có \(1.3.5...99=\frac{1.2.3.4.5...100}{2.4.6...100}=\frac{1.2.3.4.5....100}{2^{50}.1.2.3.4...50}=\frac{51.52.53...100}{2^{50}}\left(\text{đpcm}\right)\)
Ta có : \(1.3.5....99=\frac{1.2.3.4.5....100}{2.4.6...100}=\frac{1.2.3.4.5....1000}{2^{50}.1.2.3.4....50}=\frac{51.51.53....100}{2^{50}}\)( đpcm )
So sánh
\(C=1.3.5.7...99\) với \(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
Ai làm được giúp nha
Ta có:
\(D=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}....\frac{100}{2}\)
\(=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right).......\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
= 1.3.5.....99 = C
Vậy C = D
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
BẠN NÀO GIÚP MÌNH VỚI
CHỨNG MINH RẰNG:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
CÁC BẠN GIẢI ĐẦY ĐỦ HỘ MÌNH NHA
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
C= 1.3.5.7..99 với D= \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
Ta có :
\(C=1.3.5.7...99\Rightarrow C=\frac{1.3.5.7..99}{2.4.6.8..98}\Rightarrow C=\frac{1.3.5.7..9}{\left(2.2...2\right)\left(1.2.3..50\right)}\)( có 50 chữ số 2 )
\(\Rightarrow C=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
\(\Rightarrow C=D\)