f(x) = 6x + 12 = 0
f)(2.x-8).(4.x+16)=0
g)5x.(6x-12)=0
h)7.(9-x)(12-6x)=0
f) (2x - 8)(4x + 16) = 0
<=> 2x - 8 = 0 hoặc 4x + 16 = 0
<=> 2x = 0 + 8 hoặc 4x = 0 - 16
<=> 2x = 8 hoặc 4x = -16
<=> x = 4 hoặc x = -4
g) 5x(6x - 12) = 0
<=> 5x = 0 hoặc 6x - 12 = 0
<=> x = 0 hoặc 6x = 0 + 12
<=> x = 0 hoặc 6x = 12
<=> x = 0 hoặc x = 2
h) 7(9 - x)(12 - 6x) = 0
<=> 9 - x = 0 hoặc 12 - 6x = 0
<=> -x = 0 - 9 hoặc -6x = 0 - 12
<=> -x = -9 hoặc -6x = -12
<=> x = 9 hoặc x = 2
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
Giải các phương trình sau:
1. a) 7x + 12 = 0 b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5
3. a) 0,25x + 1,5 = 0 b) 6,36 – 5,2x = 0
Bài 1:
a) Ta có: 7x+12=0
\(\Leftrightarrow7x=-12\)
hay \(x=-\frac{12}{7}\)
Vậy: \(x=-\frac{12}{7}\)
b) Ta có: 5x-2=0
\(\Leftrightarrow5x=2\)
hay \(x=\frac{2}{5}\)
Vậy: \(x=\frac{2}{5}\)
c) Ta có: 12-6x=0
\(\Leftrightarrow6x=12\)
hay x=2
Vậy: x=2
d) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
Bài 2:
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
e) Ta có: 5-3x=6x+7
⇔5-3x-6x-7=0
⇔-9x-2=0
⇔-9x=2
hay \(x=\frac{-2}{9}\)
Vậy: \(x=\frac{-2}{9}\)
f) Ta có: 11-2x=x-1
⇔11-2x-x+1=0
⇔12-3x=0
⇔3x=12
hay x=4
Vậy: x=4
g) Ta có: 15-8x=9-5
⇔15-8x=4
⇔8x=11
hay \(x=\frac{11}{8}\)
Vậy: \(x=\frac{11}{8}\)
Bài 3:
a) Ta có: 0,25x+1,5=0
⇔0,25x=-1,5
hay x=-6
Vậy: x=-6
b) Ta có: 6,36-5,2x=0
⇔5,2x=6,36
hay \(x=\frac{159}{130}\)
Vậy: \(x=\frac{159}{130}\)
Cho f(x)= I -6x + 12 I + I 3x - 1 I - 5x + 7
a,Tính f( 0 ) , f(-2)
b, Rút gọn f(x)
c, Tìm x để f(x)=x+2
trình bày cách làm nữa nha
tìm x,biết:
a, 3(x-3)-6x=0
b, 2x(x-15)+2x
c, 2(x-3)+3x=9
d, x(x-11)+2(x-11)=0
e,x(x+2)+8=x^2
f, 8(x+1)+2x=-2
g,12-3(x+2)=0
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
a,x^2-9x+20=0
b,x^3-4x^2+5x=0
c,x^2=2x-15=0
d,(x^2-1)^2=4x+1
e,4x^3-9x^2+6x-1=0
f,x^4-4x^3-x^2+16x-12=0
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
Gọi M là giá trị lớn nhất của hàm số f ( x ) = 6 x 2 - 6 x + 12 + 6 x - x 2 - 4 . Tính tích các nghiệm của phương trình f(x)=M.
A. -6
B. 3
C. -3
D. 6
Gọi M là giá trị lớn nhất của hàm số f ( x ) = 6 x 2 - 6 x + 12 + 6 x - x 2 - 4 . Tính tích các nghiệm của phương trình f(x) = M.
A. -6
B. 3
C. -3
D. 6
Đặt
khi đó ta có
Ta có
BBT:
Vậy phương trình có nghiệm duy nhất x=3, do đó tích các nghiệm của chúng bằng 3.
Chọn B
1) Tìm x biết
a) x3-3x2+3x-1=0
b) (x-2)3+6(x+1)2-x+12=0
c) x3+6x2+12x+8=0
d) x3-6x2+12x-8=0
e) 8x3-12x3+6x-1=0
f) x3+9x2+27x+27=0 giải giùm mình nha
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)