Cho tam giác ABC vuông tại A,đường cao AH.Biết BH=64cm và CH=81.Tính các cạnh và góc tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 64cm và CH = 81cm. Tính các cạnh và góc tam giác ABC
Ta có : BC = BH + CH = 64 + 81 = 145 (cm)
=> \(AB^2=HB.BC=64.145\Rightarrow AB=\sqrt{64.145}=8\sqrt{145}\left(cm\right)\)
\(AC=\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\) (cm)
\(AH=\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)
Ta có \(sinB=\frac{AH}{AB}=\frac{72}{8\sqrt{145}}\Rightarrow\widehat{B}\approx48^o21'59.26''\)
\(sinC=\frac{AH}{AC}=\frac{72}{9\sqrt{145}}\Rightarrow\widehat{C}\approx41^o38'0.74''\)
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=64cm và CH=81cm. Tính các cạnh và góc tam giác ABC ( vẽ hình giúp )
Bài này mình chỉ gợi ý được ở phần góc thôi:
Ta có: Góc B + góc C = 90o
Góc HAC + góc C = 90o
=> Góc HAC = góc B
Tương tự:
Góc AHB + góc B = 90o
=> Góc AHB = góc C
(Mình chỉ gợi ý vậy thôi bạn thông cảm )
B1: Cho tam giác ABC vuông tại A, đường cao AH.Biết BH=25cm,CH=64cm. Tính các cạnh của tam giác ABC,\(\widehat{B}\),\(\widehat{C}\)
Xét \(\Delta ABC\)có \(AH^2=BH.CH=25.64=1600\Rightarrow AH=40\left(cm\right)\)
\(AC^2=CH.BC=64.\left(64+25\right)=5696\Rightarrow AC=8\sqrt{89}\left(cm\right)\)
\(AB^2=BH.BC=25.89=2225\Rightarrow AB=5\sqrt{89}\left(cm\right)\)
Ta có \(\sin B=\frac{AC}{BC}=\frac{8\sqrt{89}}{89}\Rightarrow\widehat{B}\approx58^0\)\(\Rightarrow\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-58^0=32^0\)
bài 1: cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 64cm và CH =81cm. Tính các cạnh và góc tam giác ABC
GIẢI GIÚP EM VS M.N !!!!!
cho tam giác ABC vuông tại A, đường cao AH. Biết BH=64 VÀ CH=81. Tính các cạnh và góc tam giác ABC.
hồi nưa trả lời của mình truocs rối trarl loi ban sau
áp dụng hệ thức lượng trong tam giác vuông
Cho tam giác ABC vuông tại A,đường cao AH.Biết AB=10cm,BH=6cm
a)Tính độ dài các cạnh BC,AH
b)Kẻ HM \(\perp\) AB và HN vuông góc AC.Tứ giác AMHN hình gì?
c)Tính chu vi và diện tích tứ giác AMHN
d)Chứng minh \(S_{ABC}=\dfrac{1}{2}AC.BC.sinC\)
a:ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2+6^2=10^2\)
=>\(AH^2+36=100\)
=>\(AH^2=64\)
=>AH=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BC\cdot6=10^2=100\)
=>\(BC=\dfrac{100}{6}=\dfrac{50}{3}\left(cm\right)\)
b: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
c: Xét ΔHAB vuông tại H có HM là đường cao
nên \(HM\cdot AB=HA\cdot HB\)
=>\(HM\cdot10=6\cdot8=48\)
=>HM=48/10=4,8(cm)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot10=8^2=64\)
=>AM=6,4(cm)
AMHN là hình chữ nhật
=>\(S_{AMHN}=HM\cdot AM=4,8\cdot6,4=30,72\left(cm^2\right)\) và \(C_{AMHN}=\left(HM+AM\right)\cdot2=\left(4,8+6,4\right)\cdot2=22,4\left(cm\right)\)
d: Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(AB=BC\cdot sinC\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AC\cdot AB=\dfrac{1}{2}\cdot AC\cdot BC\cdot sinC\)
cho tam giác ABC vuông tại A, đường cao AH, biết BH=1,5 cm, CH=2,5cm. Tính các góc và các cạnh của tam giác ABC
áp dụng hệ thức lượng trong tam giác vuông để tính các cạnh
tam giác ABC có: góc A = 90* đường cao AH . Áp dụng hệ thức lượng : h^=b'c' ta có
AH^2 = BH. CH =3,75 =>AH=1,93CM
THEO htl (hệ thức lượng) b^2= ab' => ab^2= bc.1,5=6 => ab=căn 6
theo định lí pytago: ac= bc^2- ab^2= 2cm
ta có sin b = ac/c =1/2=.> góc b =30*
=>góc c = 60*
cho tam giác abc vuông tại a đường cao ah. biết ch/bh=3/4 và ab+ac=14. tính các cạnh các góc của tam giác abc
CH/BH=3/4
=>AC/AB=(3/4)^2=9/16
=>AC/9=AB/16=(AC+AB)/(9+16)=14/25=0,56
=>AC=5,04; AB=8,96
BC=căn AC^2+AB^2\(\simeq10,28\)
\(sinC=\dfrac{AB}{BC}\simeq0,87\)
=>góc C=61 độ
=>góc B=29 độ
cho tam giác abc vuông tại a,đường cao ah.biết bh=9,ch=16 tính đọ dài cạnh ab
Ta có: AH^2=9*16=> AH=12
xét tam giac ABH vg có AB^2=AH^+BH^2=>AB=15