\(a^2̸+b^2\ge ab+a+b\forall a,b\)
CM BĐT sau
a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)\le\left(ac-bd\right)^2\) \(\forall a,b,c,d\)
b/ \(\left(1+a^2\right)\left(1+b^2\right)\ge\left(1+ab\right)^2\) \(\forall a,b\)
c/ \(a^2+b^2+1\ge ab+a+b\) \(\forall a,b\)
c) theo bđt cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)
cộng hết lại rút 2 đi \(\Rightarrowđpcm\)
b)theo bđt bunhiacopxki ta có
\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)
\(\Rightarrowđpcm\)
theo bđt cauchy ta có
\(-\left(a^2d^2+b^2c^2\right)\le-2abcd\)
\(\Leftrightarrow a^2c^2-a^2d^2+b^2d^2-b^2c^2\le a^2c^2-2abcd+b^2d^2\)
\(\Leftrightarrow a^2(c^2-d^2)-b^2(c^2-d^2)\le a^2c^2-2abcd+b^2d^2\)
\(\Leftrightarrow(c^2-d^2)\left(a^2-b^2\right)\le(ac-bd)^2\)
\(\Rightarrowđpcm\)
chứng minh các bất đẳng thức sau:
a) a2b+\(\frac{1}{b}\ge2a,\left(\forall a,b>0\right)\)
b) (a+b)(ab+1)≥4ab,(∀a,b>0)
c) (a+b)(a+2)(b+2)≥16ab, (∀a,b>0)
d) (1+\(\frac{a}{b}\))\(\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8,\left(\forall a.b,c>0\right)\)
\(a^2+b^2+1\ge ab+a+b.\)\(\left(\forall a,b\right)\)
Áp dụng BĐT AM - GM cho các cặp số không âm, ta được:
\(a^2+b^2\ge2ab\)(1)
\(a^2+1\ge2a\)(2)
\(b^2+1\ge2b\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\left(q.e.d\right)\)
Đẳng thức xảy ra khi a = b = 1
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng )
=> đpcm
1. chứng minh bđt
a. \(a^2+b^2+c^2\ge ab+ac+bc\)
b.\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)
c.\(a^2+b^2+c^2\ge a\left(b+c\right)\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(a^2+c^2\ge2ac\)
\(b^2+c^2\ge2bc\)
Cộng theo từng về 3 bđt trên ta đc:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Xảy ra dấu đt khi \(a=b=c\)
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Xảy ra dấu đẳng thức khi \(a=b\)
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)
Xảy ra đẳng thức khi \(a=b=c=0\)
Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Dấu bằng tại a=b
Chứng minh rằng:
a, \(a^2+b^2+c^2+3\ge2\left(a+b+c\right);\forall a,b,c\)
b,\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right);\forall a,b,c,d\)
c, \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right);\forall a,b,c,d,e\)
d, \(a^2+b^2+c^2+d^2+ab+cd\ge6;\forall a,b,c,d>0\)và \(abcd=1\)
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
b1 cm
\(a^2+b^2+1\ge ab+a+b\) \(\forall a;b\)
b2 cm bđt
\(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c-1\right)\)
cm \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y;\forall x,y>0\)
bài 1)
ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
=> \(a^2+b^2+1\ge ab+a+b\)
ý 1 mk làm òi còn 2 ý kia chưa làm thui
bài 3 nhé
ta có với x,y >0 ÁP dụng bđt cô si ta có
\(x^3+x^3+y^3\ge3x^2y;y^3+y^3+x^3\ge3y^2x\)
cộng tưngf vế và rút gọn thì ta có \(x^3+y^3\ge x^2y+xy^2=xy\left(x+y\right)\)
\(\Rightarrow\frac{x^3+y^3}{xy}\ge x+y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
Chứng minh rằng \(\forall a,b,c\)
\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)+b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^2-ab+b^2\right)\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Dấu ">" xảy ra khi
\(\left(a^2+2ab\dfrac{1}{2}+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2>0\)
\(\Leftrightarrow\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2>0\)
@Toyama Kazuha Giải kiểu gì vậy bạn?
\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
\("="\Leftrightarrow a=b\)
CMR: \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\forall a,b\ge0\)
usechatgpt init success
=>(ab-1)^2+ab(a-b)^2>=0
=>a^2b^2-2ab+1+ab(a^2-2ab+b^2)>=0
=>a^2b^2-2ab+1+a^3b-2a^2b^2+ab^3>=0
=>a^3b+ab^3-a^2b^2-2ab+1>=0
=>ab(a^2+b^2)-2ab-a^2b^2+1>=0
=>ab(a^2+b^2-2-ab)+1>=0(luôn đúng)
Chứng minh rằng: \(a^2+b^2+c^2\ge ab+bc+ca\)\(\forall a,b,c\)
\(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\right]\ge\dfrac{1}{2}\left(2ab+2bc+2ac\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)\right]\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)(đúng)
\("="\Leftrightarrow a=b=c\)
c1: \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
--> đpcm
Dấu ''='' xảy ra khi a=b=c
c2: Áp dụng bđt AM-GM
Ok cách 2 áp dụng AM-GM:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
"=" khi a=b=c