Rút gọn biểu thức sau:
a) P = (x2 + 2xy)2 + 2(x2 + 2xy)y2 = y4
Rút gọn biểu thức
(x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
\(\left(x^2+2xy\right)^2+2\left(x^2+2xy\right)y^2+y^4\)
\(=\left(x^2+2xy+y^2\right)^2\)
\(=\left(x+y\right)^4\)
Rút gọn biểu thức: A = ( x – 2 y ) . x 2 + 2 x y + y 2 - ( x + 2 y ) . x 2 – 2 x y + y 2
A. 2 x 3
B. - 16 y 3
C. 16 y 3
D. – 2 x 3
Bài 1: Rút gọn các biểu thức:
a.(x + 2)2 - (x + 4)2 + x2 - 3x + 1
b.(2x + 2)2 - 4x(x + 2)
c. (2x - 1)2 - 2(2x - 3)2 + 4
d. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
e. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
f. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
g. (2x + 3y)(4x2 - 6xy + 9y2)
h. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
n. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
Bài 3:Rút gọn biểu thứca)
A = (x –y)2+ 4xyb)
B = (a + b)2+ (a –b)2c)
P = (x2+ 2xy)2+ 2(x2+ 2xy)y2+ y4
thank đã trả lời
A = (x –y)2+ 4xy
= x2-2xy+y2+4xy
= x2+2xy+y2
=(x+y)2
B = (a + b)2+ (a –b)2
=(a+b+a-b)(a+b-a+b)
=2a.2b
=4ab
\(A=\left(x-y\right)^2+4xy=\left(x+y\right)^2\)
\(B=\left(a+b\right)^2+\left(a-b\right)^2=2a^2+2b^2\)
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3)
= x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
Bài 10 : Rút gọn các biểu thức
a. A = ( x + 2 ) ( x2 - 2x + 4 ) - x3 + 2
b . B = ( x - 1 ) ( x2 + x + 1 ) - ( x + 1 ) ( x2 - x + 1 )
c. C = ( 2x - y ) ( 4x2 + 2xy + y2 ) + ( y - 3x ) ( y2 + 3xy + 9x2 )
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
Bài 3: Rút gọn các biểu thức sau:
1) ( x+ 3)(x2 -3x + 9) - (x3 + 54)
2) (2x + y)(4x2 + 2xy + y2 ) - (2x – y)(4x2 + 2xy + y2 )
3) (x – 1)3 – (x + 2)(x2 -2x +4) +3(x +4)(x – 4)
4) x(x + 1)(x - 1) – (x + 1)(x2 – x +1)
5) 8x3 - 5 (2x + 1)(4x2 – 4x + 1)
6) 27 + (x – 3)(x2 +3x + 9)
7) (x – 1)3 – (x +2)(x2 -2x + 4) +3(x +4)(x -4)
8) (x – 2)3 +6( x – 1)2 –(x +1)(x2 -x +1) +3x
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)