Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Hồng Nhung
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Đặng Ngọc Quỳnh
30 tháng 8 2021 lúc 15:13

Tìm đk , rút gọnundefined

Khách vãng lai đã xóa
Nguyễn Huy Tú
30 tháng 8 2021 lúc 15:13

ĐK : x > 2 

\(\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\frac{1}{x-1}\right)\)

\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}\left(\frac{x-1-1}{x-1}\right)\)

\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}\left(\frac{x-2}{x-1}\right)\)

Với x > 2 

\(=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}\left(\frac{x-2}{x-1}\right)=\frac{2\sqrt{x-1}}{x-1}\)

Khách vãng lai đã xóa
Nguyễn Quang Duy
Xem chi tiết
Nguyễn Huy Tú
22 tháng 8 2021 lúc 16:24

a, Với \(x\ge0;x\ne\frac{16}{9};4\)

\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)

\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)

b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)

\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)

Khách vãng lai đã xóa
kaitouzoe
Xem chi tiết
Le Nguyen Tuan Long
Xem chi tiết
lê Ngọc Trang Vy
Xem chi tiết
Nguyễn Hoàng Hải Dương
Xem chi tiết
Minh Triều
7 tháng 7 2015 lúc 22:39

a)\(x-4\ne0;x\ge0\)

<=>\(x\ne4;x\ge0\)

b)\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{2}{x+4\sqrt{x}+4}\right):\left(\frac{2}{x-4}-\frac{1}{\sqrt{x}-2}\right)\)

=\(\left(\frac{1}{\sqrt{x}+2}-\frac{2}{\left(\sqrt{x}+2\right)^2}\right):\left(\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-2}\right)\)

=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}-\frac{2}{\left(\sqrt{x}+2\right)^2}\right):\left(\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

=\(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}:\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

=\(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

tung nguyen
Xem chi tiết
Nguyễn Quang Duy
Xem chi tiết
Nguyễn Minh Quang
22 tháng 8 2021 lúc 18:48

ta có :

\(P=\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x}+1}+\frac{24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)

\(\frac{-\left(\sqrt{x}+4\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)+24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}=\frac{6x+4\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)

\(=\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\)

Để \(P\ge-6\Leftrightarrow\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\ge-6\Leftrightarrow\frac{48\sqrt{x}-4}{7\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}0\le\sqrt{x}\le\frac{1}{12}\\\sqrt{x}>\frac{1}{7}\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x\le\frac{1}{144}\\x>\frac{1}{49}\end{cases}}\)

Khách vãng lai đã xóa
trần linh
Xem chi tiết