Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu An
Xem chi tiết
Hoàng Phúc
6 tháng 7 2016 lúc 17:07

\(3.\left(ab+bc+ca\right)=\left(a+b+c\right)^2\)

\(=>3ab+3bc+3ca=a^2+b^2+c^2+2ab+2bc+2ca\)

\(=>3ab+3bc+3ca-a^2-b^2-c^2-2ab-2bc-2ca=0\)

\(=>-a^2-b^2-c^2+ab+bc+ca=0=>-\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(=>a^2+b^2+c^2-2ab-2bc-2ca=0=>2\left(a^2+b^2+c^2-2ab-2bc-2ca\right)=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm =0 <=> chúng = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c\left(đpcm\right)}\)

Vũ Lan
Xem chi tiết
Diệu Ngọc Nguyễn
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Thanh Nga
5 tháng 10 2017 lúc 12:37

bài này trong sách nâng cao và phát triển à

Thanh Nga
5 tháng 10 2017 lúc 12:52

Vì là trong sách nên có lẽ đã lm đc câu a nên ta sẽ áp dụng:

b) 2.( ab+bc+ca) = 2( a^2.b^2+ b^2.c^2+c^2.a^2+ 2.b^2.a.c + 2a^2.b.c+ 2c^2.a.b)

= 2. [ a^2.b^2+b^2.c^2+c^2.a^2+ 2abc ( a+b+c)]

= 2. (a^2.b^2 + b^2.c^2 + c^2.a^2 )  ( Vì a+b+c = 0)

= a^4 + b^4 + c^4 ( theo câu a nha)

I hate you
Xem chi tiết
Thanh Tùng DZ
20 tháng 11 2017 lúc 11:41

Ta có :

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)

Diệu Ngọc Nguyễn
Xem chi tiết
Diệu Ngọc Nguyễn
20 tháng 11 2016 lúc 10:04

bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.

Khôi Nguyên Nguyễn
Xem chi tiết
Sana .
28 tháng 2 2021 lúc 8:51

(a+b+c).(a+b+c)-2(a.b+b.c+c.a)=a^2+ab+ca+ab+b^2+bc+ca+bc+c^2-2ab-2bc-2ca=(a^2+b^2+c^2)+(ab+ab-2ab)+(ca+ca-2ca)+(bc+bc-2bc)=a^2+b^2+c^2 .

Mik viết thế này mong bạn thông cảm .

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
28 tháng 2 2021 lúc 8:50

Ta có: \(\left(a+b+c\right).\left(a+b+c\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2\)

Khách vãng lai đã xóa
Anna Vũ
Xem chi tiết
Pain Địa Ngục Đạo
20 tháng 3 2018 lúc 13:29

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

Xem chi tiết
Thu Thao
6 tháng 2 2021 lúc 16:53

a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)

b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

\(\Rightarrow a^2b^2c^2=36\)

=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)

TH1 :  abc = - 6

Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)

TH2 : abc =  6

Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)