Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

nguyễn thu ánh
Xem chi tiết
Akai Haruma
23 tháng 7 2021 lúc 9:46

Lời giải:

Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$

$\Rightarrow d=1$

Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.

 

Mai Bùi
Xem chi tiết
Đinh Tuấn Việt
25 tháng 11 2015 lúc 10:12

Đặt ƯCLN(2n+1; 2n+3) = d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\) Ư(2) = {1; 2}

Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.

Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau 

Cong Hieu
Xem chi tiết
Arima Kousei
11 tháng 3 2018 lúc 18:28

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n \(⋮2\)

=> ( n + 1 ) x n : 2  \(⋮1\), n > 1 

=>  a là số nguyên tố  

NTN vlogs
31 tháng 12 2018 lúc 8:45

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n ⋮2

=> ( n + 1 ) x n : 2  ⋮1, n > 1 

=>  a là số nguyên tố  

vkook
29 tháng 4 2019 lúc 22:36

tổng a là

\(\frac{n.\left(n+1\right)}{2}\)

do n và n+1 là hai số liên tiếp

\(\Rightarrow\)\(n.\left(n+1\right)⋮2\)

\(\Rightarrow\)\(\frac{n.\left(n+1\right)}{2}⋮1\left(n>1\right)\)

\(\Rightarrow\)a là số nguyên tố

\(\Rightarrow\)\(\left(a,b\right)=1\left(đpcm\right)\)

nguyễn yến nhi
Xem chi tiết
Lung Thị Linh
22 tháng 11 2018 lúc 20:44

a, Gọi d là ƯCLN  của n + 2 và 2n + 3

\(\Rightarrow n+2⋮d\) 

\(\Rightarrow2\left(n+2\right)⋮d\)

\(\Rightarrow2n+4⋮d\)

Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)

=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau

b, Gọi d là ƯCLN của 3n + 1 và 2n + 1

\(3n+1⋮d\) và \(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\) 

\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1

=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau

Nguyễn Trúc Quỳnh
Xem chi tiết
Lại Vũ  Anh
20 tháng 12 2022 lúc 21:08

Hi

 

HEV_NTP
Xem chi tiết
HEV_NTP
29 tháng 8 2021 lúc 9:55

Giúp mình với mn

 

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 9:59

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

ILoveMath
29 tháng 8 2021 lúc 10:02

a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)

\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)

d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)

Nguyễn Hà Linh
Xem chi tiết
Phạm Trung Kiên
10 tháng 1 2020 lúc 19:24

Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)

Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d

Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau

Khách vãng lai đã xóa
Nguyễn Trí Nghĩa (team b...
10 tháng 1 2020 lúc 19:25

Gọi d là ƯCLN(n+1,n+2)

=>n+1\(⋮\)d(1)

=>n+2\(⋮\)d(2)

Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d

                     =>n+2-n-1\(⋮\)d

                       =>1\(⋮\)d

                      =>d\(\in\)Ư(1)={1}

=>d=1

Vậy n+1 và n+2 nguyên tố cùng nhau

Chúc bn học tốt

Khách vãng lai đã xóa
Phạm Thị Khánh Huyền
10 tháng 1 2020 lúc 19:41

Gọi ƯCLN(n+1,2n+1)=d

 n+1 chia hết cho d =>2(n+1) chia hết cho d =>2n+2 chia hết cho d

2n+1 chia hết cho d

=> 2n+2-(2n+1) chia hết cho d

=>1 chia hết cho d

=> d=1

=>n+1 và 2n+1 nguyên tố cùng nhau

Khách vãng lai đã xóa