(2x+5)(x-4)=(x-4)(5-x) giải hộ mình ạ (cảm ơn mn)
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3
b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1
c, √x+4−√1−x=√1−2xx+4−1−x=1−2x
d,√x+9=5−√2x+4x+9=5−2x+4
Bài 5:
a, √x+4√x+4=5x+2x+4x+4=5x+2
b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4
c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2
d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72
Ví Dụ 1:
a, √2x−1=√2−12x−1=2−1
b, √x+5=3−√2x+5=3−2
c, √3x2−√12=03x2−12=0
d, √2(x−1)−√50=02(x−1)−50=0
Thu gọn
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3
b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1
c, √x+4−√1−x=√1−2xx+4−1−x=1−2x
d,√x+9=5−√2x+4x+9=5−2x+4
Bài 5:
a, √x+4√x+4=5x+2x+4x+4=5x+2
b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4
c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2
d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72
Ví Dụ 1:
a, √2x−1=√2−12x−1=2−1
b, √x+5=3−√2x+5=3−2
c, √3x2−√12=03x2−12=0
d, √2(x−1)−√50=02(x−1)−50=0
Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)
Nhờ mn giải giúp mình PT này chi tiết một chút vs ạ, cảm ơn mn nhìu nha
\(\dfrac{48}{x+4}\)+\(\dfrac{48}{x-4}\)=5
`48/[x+4]+48/[x-4]=5` `ĐK: x \ne +-4`
`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`
`=>48x-192+48x+192=5x^2-80`
`<=>5x^2-96x-80=0`
`<=>5x^2-100+4x-80=0`
`<=>5x(x-20)+4(x-20)=0`
`<=>(x-20)(5x+4)=0`
`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$ (t/m)
Vậy `S={-4/5;20}`
ĐK : \(x\ne\pm4\)
\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow48x+192+48x-192==5x^2-80\)
\(\Leftrightarrow96x=5x^2-80\)
\(\Leftrightarrow5x^2-96x-80=0\)
\(\Leftrightarrow5x^2+4x-100-80=0\)
\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)
|2x+5|-2x=x+4
|5x-3|+2x=8
|3x+4|-x=25
giải hộ mình nhé
mình đang cần gấp lắm và giải thích kĩ giùm mình nhé
cảm ơn
Bài 10.Rút gọn biểu thức:
a)(-x+1).(x2-2)-(1-x3-x2)
b)-4.(x+3).(x+4)+4x2-5x
c)(2x+3).(1-x)-(2x-1).3x
d)(x-1)2-(x-1).(-5x)
e)2x(x-3)+(x-2).(5-2x)
f)2(x-5).(2x+3)-(x-3).(x+1)
Giúp mình với mình cảm ơn mn ạ
giải BPT : a) (1-x)(2x+5) > 0 b) (3-x)(x+5) < 0 c) (3x-7)(5-x) > 0
GIải hộ mình với nha cảm ơn nhiều ạ <3
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d,\(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Ví Dụ 1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\)
b, \(\sqrt{x+5}=3-\sqrt{2}\)
c, \(\sqrt{3x^2}-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Giải các phương trình sau:
1. (2+x)\(\sqrt{x-2}\)= x2 - 4
2. |x2-4x| = 5-2x
Mọi người làm hộ mình, nhất là câu 2 ạ (mình muốn chắc đáp án). Cảm ơn nhiều ạ
1.
\(DK:x\ge2\)
PT
\(\Leftrightarrow\left(2+x\right)\sqrt{x-2}-\left(x+2\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\sqrt{x-2}\left(1-\sqrt{x-2}\right)=0\)
Cho này thì ok ròi nhé
2.
\(DK:x\le\frac{5}{2}\)
Xet \(x\in\left[0;\frac{5}{2}\right]\)
PT
\(\Leftrightarrow x^2-4x=5-2x\)
\(\Leftrightarrow x^2-2x-5=0\)
Ta co:
\(\Delta^`=\left(-1\right)^2-1.\left(-5\right)=6>0\)
\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{6}\left(l\right)\\x_2=1-\sqrt{6}\left(l\right)\end{cases}}\)
Xet \(x\le0\)
PT
\(4x-x^2=5-2x\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=5\left(l\right)\end{cases}}\)
Vay PT vo nghiem
Tìm x .
x(x-5).(x+5)-(x+2).(x^2-2x+4)=17
Mình cần giải thích cặn kẽ ạ ! Cần gấp lắm ạ .
Cảm ơn .
x(x-5).(x+5)-(x+2).(x^2-2x+4)=17
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3+2x^2-4x-2x^2+4x-8=17\)
\(\Leftrightarrow-25x=17+8\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=-1\)
#)Giải :
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(\Rightarrow x^3-25-\left(x^3+8\right)=17\)
\(\Rightarrow x^3-25x-x^3-8=17\)
\(\Rightarrow-25x=25\Rightarrow x=-1\)
Vậy x = -1
x.(x - 5).(x + 5) - (x + 2).(x2 - 2x + 4) = 17
<=> -25x - 8 = 17
<=> -17x = 17
<=> x = -1
=> x = -1