Giải pt nghiệm nguyên\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}x^4+y^4=34\\x+y=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\left(x-1\right)\left(y^2+6\right)=y\left(x^2+1\right)\\\left(y-1\right)\left(x^2+6\right)=x\left(y^2+1\right)\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)
\(\Rightarrow x^4+\left(x-2\right)^4=34\)
Đặt \(x-1=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)
\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)
Lần lượt cộng 2 vế và trừ 2 vế ta được:
\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)
Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)
TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)
\(\Rightarrow u^2-6u+5=0\)
\(\Leftrightarrow...\)
Giải pt nghiệm nguyên dương: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Giải PT nghiệm nguyên : \(x^3+2x^2+3x+1=\left(y+4\right)^3\)
Dùng định lý kẹp nhé
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
có x2 >= 0
<=> x3 + 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)
Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x3 + 3x2 + 3x + 1
<=> x = 0
Thay vào biểu thức được y = -3
Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)
Cái phần "
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
" bị sai
đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3
thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x = -1 => y = -1
Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)
giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
cho hệ pt \(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
giải hệ pt khi m=2
tìm m để hệ pt có nghiệm duy nhất sao cho \(^{x^2-y^2=4}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
giải hệ pt :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
Đây chắc chắn là 1 hệ pt không giải được
Lần lượt lấy (trên + dưới) và lấy (dưới - trên) được 1 hệ mới, sau đó chia vế cho vế và đặt \(\dfrac{x}{y}=t\) sẽ đưa về 1 pt không thể phân tích thành nhân tử, đồng nghĩa không thể giải hệ đã cho
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
Giải PT nghiệm nguyên \(\left(x-y\right)\left(2x+y+1\right)+9\left(y-1\right)=13\)