\(\sqrt{x^2-8x+16}+|x+2|=0\)
Giải phương trình trên !
Giải phương trình \(x^2+2\sqrt{x+\frac{1}{x}}=8x-1\)
Giải phương trình: \(2x^2-8x-3\sqrt{x^2-4x+5}=12\)
PT ⇒ \(2\left(x^2-4x+5\right)-3\sqrt{x^2-4x+5}=22\)
Đặt \(\sqrt{x^2-4x+5}=y>0\), ta có:
\(2y^2-3y-22=0\) \(\Rightarrow y=\frac{3\pm\sqrt{185}}{4}\)
Số xấu quá, ko muốn giải nữa :D
Có vẻ phương trình có 4 nghiệm
Giải phương trình:
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
P/s: Cần gấp
học lớp 6 mà đã phải giải bài phương trình khó thế này khổ nha
ta đặt \(\sqrt[3]{7x+1}=a;-\sqrt[3]{x^2-x-8}=b;\sqrt[3]{x^2-8x-1}=c\)
ta có \(a^3+b^3+c^3=7x+1-x^2+x+8+x^2-8x-1=8\)
từ phương trình ta có \(a+b+c=2\Rightarrow\left(a+b+c\right)^3=8\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\)
=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
tự thay vào và giải tiếp nhé hình như làm 3 trương hợp thì phải
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
\(\Rightarrow\sqrt[3]{7x+1}+\sqrt[3]{x^2-8x-1}=2+\sqrt[3]{x^2-x-8}\)
Lập phương 2 vế lên ta được: \(\left(7x+1\right)\left(x^2-8x-1\right)=8\left(x^2-8x-8\right)\)
\(\Rightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)
\(2.10x^2+3x+1=\left(1+6x\right)\sqrt{x^2+3}\)
\(\Rightarrow x^2+3-\left(1+6x\right)\sqrt{x^2+3}+9x^2+3x-2=0\)
Nghiệm hơi xấu :(
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải phương trình:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
Giải các phương trình :
a) \(\sqrt{2}-x=\sqrt[4]{17-4\sqrt{2}x^3-8\sqrt{2}x}\)
b) \(\sqrt{3x}+\sqrt{15-3x}=\sqrt{8x-5}\)
Giải phương trình: \(x^2+(16-x\sqrt{3})^2=4(12-x)^2\)
Bạn nào cứu mình với...
\(x^2+\left(16-x\sqrt{3}\right)^2=4\left(12-x\right)^2\)
\(\Leftrightarrow x^2+256-32\sqrt{3}x+3x^2=4\left(144-24x+x^2\right)\)
\(\Leftrightarrow4x^2-32\sqrt{3}x+256=576-96x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-32\sqrt{3}x+96x+256-576=0\)
\(\Leftrightarrow\left(96-32\sqrt{3}\right)x-320=0\)
\(\Leftrightarrow\left(96-32\sqrt{3}\right)x=320\)
\(\Leftrightarrow x=\frac{320}{96-32\sqrt{3}}=\frac{15+5\sqrt{3}}{3}\)
Giải phương trình: \(\hept{\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}}\)
1Phương trình bậc nhất 1 ẩn: là phương trình có dạng ax+b=0(a≠0).Thông thường để giải phương trình này ta chuyển những hạng tử có chứa biến về 1 vế, những hạng tử ko chứa biến về 1 vế
1) 16-8x=0 2)7x+14=0 3)5-2x=0 4)3x-5=7 5)8-3x=6 6)8=11x+6 7)-9+2x=0 8)7x+2=0
9)5x-6=6+2x 10)10+2x=3x-7
1) \(16-8x=0.\\ \Leftrightarrow8x=16.\\ \Leftrightarrow x=2.\)
2) \(7x+14=0.\\ \Leftrightarrow7x=-14.\\ \Leftrightarrow x=-2.\)
3) \(5-2x=0.\\ \Leftrightarrow x=\dfrac{5}{2}.\)
4) \(3x-5=7.\\ \Leftrightarrow3x=12.\\ \Leftrightarrow x=4.\)
5) \(8-3x=6.\\ \Leftrightarrow3x=2.\\ \Leftrightarrow x=\dfrac{2}{3}.\)
6) \(8=11x+6.\\ \Leftrightarrow11x=2.\\ \Leftrightarrow x=\dfrac{2}{11}.\)
7) \(-9+2x=0.\\ \Leftrightarrow x=\dfrac{9}{2}.\)
8) \(7x+2=0.\\ \Leftrightarrow x=-\dfrac{2}{7}.\)
9) \(5x-6=6+2x.\\ \Leftrightarrow3x=12.\\ \Leftrightarrow x=4.\)
10) \(10+2x=3x-7.\\ \Leftrightarrow x=17.\)