Tìm x, y, z biết rằng:4/x= 7/y= 12/z và 2x+ 3y+ 4z= 1925
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
tìm x,y biết:
a) x/-3=y/-7 và 2x+4y=68
b) x/4=y/3 và x.y=12
c) x/4=y/7 và 3x^2 - 4y^2=100
d) x/2=y/5;y/3=z/2 và 2x+3y-4z=34
e) x=3y=2z và 2x-3y+4z=48
a) x/-3=y/-7=2x/-6=4y/-28=2x+4y/(-6)+(-28)= 68/-34=-2
Vậy x/-3 = -2 => x=(-2)x(-3)=6
y/-7= -2 => y=(-2)x(-7)=14
nhớ chọn nhé
tìm x,y,,z biết rằng
2x/3=3y/4=4z/5 và x+y+z=49
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}\)= 12
=> x = 12.3 : 2 = 18 ; y = 12.4 : 3 = 16 ; z = 12.5 : 4 = 15
Tìm các số x, y, z biết rằng :
a. \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)và x + y - z = 38
b. 7x = 10y = 12z và x + y + z = 685
b) Ta có: 7x=10y=12z
nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}=\dfrac{x+y+z}{\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{12}}=\dfrac{685}{\dfrac{137}{420}}=2100\)
Do đó:
\(\left\{{}\begin{matrix}x=2100\cdot\dfrac{1}{2}=1050\\y=2100\cdot\dfrac{1}{10}=210\\z=2100\cdot\dfrac{1}{12}=175\end{matrix}\right.\)
Tìm các số x,y,z,biết rằng 2x phần 3 =3y phần 4 =4z phần 5 và x+y+z=49
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(x=\frac{3}{2}.12=18\)
\(y=\frac{4}{3}.12=16\)
\(z=\frac{5}{4}.12=15\)
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Tìm các số x,y biết rằng
a 2x/3=3x/4=4z/5 và x+y+z=49
b x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
tìm các số x, y ,z, biết rằng:
a) x:y:z=3:4:5 và 5z^2-3x^2-2y^2=594
b) 3(x-1)=2(y-2);4(y-2)=3(z-3) và 2x+3y-z=50
c) 2x/3=3y/4=4z/5 và x+y-z =38
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
Tìm x,y,z biết x/3 = y/5 = z/7 và 2x - 3y + 4z = 48
Từ x/3=y/5=z/7.áp dụng tính chất dãy tỉ số bằng nhau
Đc: x/3=y/5=z/7=(2x-3y+4x)/(6-15+28)=48/19
=>x=48/19*2=144/19
=>y=48/19*5=240/19
=>z=48/19*7=336/19
study well
k nha
ai k đúng cho mk mk trả lại gấp dôi
ai ghé qua xin hãy để lại 1 k
Áp dụng tính chất của dãy tie số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{2x}{6}=\frac{3y}{15}=\frac{4z}{28}=\frac{2x-3y+4x}{6-15+28}=\frac{48}{19}\)
Từ \(\frac{2x}{6}=\frac{48}{19}\Rightarrow x=\frac{144}{19}\)
\(\frac{3y}{15}=\frac{48}{19}\Rightarrow x=\frac{240}{19}\)
\(\frac{4z}{28}=\frac{48}{19}\Rightarrow z=\frac{336}{19}\)
Study well
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7};2x-3y+4z=48\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{4z}{28}\); \(2x-3y+4z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{4z}{28}=\frac{2x-3y+4z}{6-15+28}=\frac{48}{19}\)
Từ đó bạn tính nốt là xong nhé!
Chúc bạn học tốt!!