Bài 1: Áp dụng hằng đẳng thức
a) ( x^4-2x^2y+y^2) : (y-x^2)
b) (x^2 -2xy^2+y^4) : (x-y^2)
Câu 1: (3đ) Áp dụng hằng đẳng thức tính:
a. A = 2xy mũ 2+x mũ 2 y mũ 4 +1 tại x=2y=16
b. B = x mũ 3 +9x+27x+27 tại x=97
c. (2x+y mũ 2-1)(2x+y mũ 2+1)
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
h, ( 27x mũ 3 - 8 ) : ( 3x - 2 )
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
bài 4 : tìm x biết(áp dụng hằng đẳng thức)
a/ (x-2)^3 -x(x+1)(x-1) + 6x(x-3) = 0 ; b/(x+1)^3 - ( x-1)^3 -6(x-1)^2 = -10
bài 5 Cho x+y=4 . Tính giá trị biểu thức : A= 9+3(x+y) + x^3 + y^3 - 2x^2 - 2y^2 - 4xy + 3xy( x+y)
bài 6 Cho x-y = 3 .Tính giá trị biểu thức: B= 2xy - y^2- x^2 + x3 - 3xy( x-y) - y^3
giúp mình với mình cần rất gấp . Các bạn khi giải nhớ cả 3 bài đều phải áp dụng hằng đẳng thức . THANK YOU !
Thu gọn (Áp dụng hằng đẳng thức)
a) (x +3 ). (x2 - 3x + 9) - ( 54 + x3)
b) ( 2x + y) . ( 4x2 - 2xy + y2) - ( 2x - y) . ( 4x2 + 2xy + y2)
Bạn nào biết giúp mình nhé! Thanks nhiều!
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
bấm hích nhé,mình sẽ àm cho bạn^^
cho x-y=1. Tính giá trị biểu thức :
P=(x+y).(x^2+y^2).(x^4+y^4)-x^8+y^8+1
Gợi ý : Áp dụng hằng đẳng thức 3
(A+B).(A-B)=A^2-B^2
cm đẳng thức\(a.\dfrac{x}{x+y}+\dfrac{4}{x^2+3xy+2y^2}+\dfrac{-3x}{x+2y}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x+2y\right)}\) với x ≠ -y; x ≠ -2y
b. \(\dfrac{x+y}{x-y}=\dfrac{x^2+2xy+y^2}{x^2-y^2}\)
\(a,VT=\dfrac{x^2+2xy+4-3x^2-3xy}{\left(x+y\right)\left(x+2y\right)}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x-2y\right)}=VP\\ b,VP=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}=VT\)
áp dụng hằng dẳng thức thực hiện phếp chia
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2