Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 9:29

ĐK:  y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3

Xét  3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3

Thay vào (2) không thỏa mãn

Xét  3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3

(1) ⇔ y ( x   –   y ) = y − x 3 y − 1 + x + 2 y − 1

Với x = y, thay vào (2) ta được:

x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2   ( x 2 – 2 x + 2 ) = 0 ⇔ x   =   1

Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)

Nên x. y = 1

Đáp án:B

Mèo Dương
Xem chi tiết
Nhật Văn
8 tháng 2 2023 lúc 20:50

kh hiểu bn ơi

Lãnh
8 tháng 2 2023 lúc 20:55

`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`

Nguyễn Minh Hiệu
Xem chi tiết
Nguyễn Minh Hiệu
17 tháng 1 2018 lúc 14:25

giúp với

hoàng long Lê thái
Xem chi tiết
Vũ Trần Giang
25 tháng 3 2023 lúc 21:23

+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP 
kẹp:

(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1 
thay vào 

x2y2+4=4x2+y2+3x+3y

r giải pt có x,y

tự làm nốt
 


 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 8 2018 lúc 12:13

Ta có: 2 x y + y 2 − 4 x − 3 y + 2 = 0 x y + 3 y 2 − 2 x − 14 y + 16 = 0 ⇒ 2 x y + y 2 − 4 x − 3 y + 2 = 0 2 x y + 6 y 2 − 4 x − 28 y + 32 = 0

⇒ 5 y 2 − 25 y + 30 = 0 ⇒ y = 3 ; y = 2

Khi y = 3  thì phương trình đầu trở thành  6 x + 9 - 4 x - 9 + 2 = 0 ⇔ x = - 1

Khi  y = 2  thì phương trình đầu trở thành  4 x + 4 - 4 x - 6 + 2 = 0

⇔ 0 x = 0 ⇔ x ∈ R

Đáp án cần chọn là: A

41 8/4 Như Ý
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 23:59

\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)

Yim Yim
Xem chi tiết
lê quỳnh như
Xem chi tiết
Thắng Nguyễn
24 tháng 10 2016 lúc 16:53

\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)

Lấy pt (1)+2*pt (2) ta được:

\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)

Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:

\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)

Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:

\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)

Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)

cù thị lan anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 23:12

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)