Tứ giác ABCD có góc A = 60 độ, góc B = 90 độ. Tính góc C, góc D và góc ngoài tứ giác tại đỉnh C nếu a) góc C - góc D = 20 độ b) góc C = 3/4 góc D
cho tứ giác abcd có góc b = 120 độ ,góc c = 60 độ,góc d=90 độ.Tính góc a và góc ngoài tại đỉnh a
Ta có: ˆA+ˆB+ˆC+ˆD=360oA^+B^+C^+D^=360o
⇒ˆA+120độ+60độ+90độ=360độ⇒A^+120độ+60độ+90độ=360độ
⇒ˆA=360độ−90độ−60độ−120độ=90 độ
Cho tứ giác ABCD có góc A = 60°, góc B=90°.
Tính góc C và góc D và góc ngoài của tứ giác đỉnh C nếu :
a) góc C - góc D = 90°
b) góc C = 3/4 góc D
cho tứ giác ABCD có góc A = 130 độ , góc B = 90 độ , góc ngoài tại đỉnh C = 120 độ . Tính góc D ?
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)
bạn có thể vẽ hình giúp mình được k
Tứ giác ABCD có A=60;B=90.Tính góc C,D và góc ngoài của tứ giác tại đỉnh C nếu :
a)C-D=20
b)C=3/4D
tổng 2 góc d và c là
360-90-60=210 a, nếu c-d=20 thì
C= ( 210+20) : 2= 115o
D= 210-115=95o
b, nếu C= 3/4 D thì
C= 3/4+3 ( C+D)
C= 3/7 210=90o
D= 90: 3/4=120o
cho tứ giác ABCD , có góc A = 130 độ , góc B =90 độ , góc ngoài tại đỉnh C= 120 độ . tính góc D
BÀI 1 : Tứ giác ABCD có góc B = 110 độ; góc D = 70 độ. Ac là phân giác của góc A. Chứng minh CB= CD
BÀI 2 Cho tứ giác ABCD; góc A= 90 độ; góc B = 60 độ. Góc ngoài tại đỉnh D= 60 độ
a/ Tính góc C
b/ Cho AD= 3cm; BC= 4cm. Chứng minh AC+BD> 7cm
c/ Dựng tứ giác ABCD thỏa mãn các điều kiện trên
Bài 3: Cho tứ giác ABCD có AB//CD và góc D =60 độ
a) Tính số đo góc A?
b) Biết góc B phần góc D = 4/5. Tính góc B, góc C
Bài 4: Cho tứ giác ABCD, góc A - góc B = 40 độ. Các tia phân giác của góc C, góc D cắt nhau tại O. Cho biết góc COD= 110 độ. Chứng minh rằng AB vuông góc với BC
Nhờ các bạn hướng dẫn mình hai bài này
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
Bài 4: Tứ giác ABCD có 𝐴̂ = 600; 𝐵̂=900. Tính góc C, góc D và góc ngoài của tứ giác tại đỉnh C nếu :
a) GÓC C− GÓC D=200 b) C= 3/4 GÓC D
a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)
mà \(\widehat{C}-\widehat{D}=20^0\)
nên \(2\cdot\widehat{C}=230^0\)
\(\Leftrightarrow\widehat{C}=115^0\)
\(\Leftrightarrow\widehat{D}=95^0\)
Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)
b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)
\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)
\(\Leftrightarrow\widehat{D}=120^0\)
\(\Leftrightarrow\widehat{C}=90^0\)
Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)
cho tứ giác ABCD có góc A= 130 độ , góc B =90 độ , góc ngoài tại đỉnh C = 120 độ tính góc D ? ( vẽ hình cho mình với nhé )
Cho tứ giác ABCD có góc B = 120 độ , góc C = 60 độ , góc D = 90 độ . Tính góc A và góc ngoài tại A
Giải chi tiết giúp mình nha
Vẽ hình, gọi A1 là góc trong còn A2 là góc ngoài tại A
Ta có: \(\widehat{A_1}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (Tổng 4 góc của tứ giác)
\(\Rightarrow\widehat{A}_1+120^0+60^0+90^0=360^0\)
\(\Rightarrow\widehat{A_1}=360^0-120^0-60^0-90^0=90^0\)
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)
\(\Rightarrow90^0+\widehat{A_2}=180^0\Rightarrow\widehat{A_2}=90^0\)
Vậy ....
trong tứ giác ABCD có: góc A+ góc B+ góc C+ góc D=360 độ
thay số: góc A+ 120 độ + 60 độ+ 90 độ= 360 độ
suy ra: góc A= 360 độ -120 độ -60 độ- 90 độ=90 độ
góc ngoài tại A= 180 độ - góc A
thay số: góc ngoài tại A=180 độ-90 độ=90 độ
Vậy góc A=90 độ, góc ngoài của A=90 độ
May cho bạn đó,mình mới làm một bài có dạng giống như bài của bạn, để mình giải thử nhé!
Hình chỉ mang tính chất minh họa thôi nhé
Ta có: \(\widehat{A2}\)= \(360^0-\left(\widehat{B2}+\widehat{C2}+\widehat{D2}\right)\) \(\Rightarrow\widehat{A2}=360^0-\left(120^0+60^0+90^0\right)=360^0-270^0=90^0\) Vậy \(\widehat{A2}\)=\(90^0\)
Vì góc A1 kề bù với góc A2 nên \(\widehat{A1}=180^0-90^0=90^0\)
Vậy góc A2 có số đo là 90 độ,góc A1 là 90 độ