Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Cát Tường
Xem chi tiết
meme
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

meme
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:38

1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)

\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)

=>\(BC^2=AB^2+AC^2-AB\cdot AC\)

2:

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AF=AB/AC

góc EAF chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)

=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)

=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)

=>\(S_{BFEC}=3\cdot S_{AFE}\)

Nhân Võ
Xem chi tiết
Nguyễn Ngọc Ánh
17 tháng 9 2017 lúc 15:00

kẻ đường cao AH. Ah= h 

khi đó: tam giác ACH vuông tại H có

               sin C = h/b

      => a.b.sin C= a.h

      => 1/2 a.b. sin C = a.h/2= SABC

Thiên Hà
Xem chi tiết
Ichigo Sứ giả thần chết
Xem chi tiết

H A B C

a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt

NHỚ TK MK NHA

Tien Nguyen
Xem chi tiết
level max
Xem chi tiết
Edogawa Conan
9 tháng 2 2022 lúc 18:53

a) Kẻ đường cao AH

Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)

Mà BM = CM (do M là trung điểm của BC )

\(\Rightarrow S_{ABM}=S_{ACM}\)

b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)

Minh Hiếu
9 tháng 2 2022 lúc 18:53

a) Xét tam giác ABM và tam giác ACM có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có MB=MC( AM đường trung tuyến)

\(S_{ABM}=S_{ACM}\)(đpcm)

b) Xét tam giác ABM và tam giác ABC có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)

⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)

level max
Xem chi tiết
Minh Hiếu
9 tháng 2 2022 lúc 19:51

a) Xét tam giác ABM và tam giác ACM có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có MB=MC( AM đường trung tuyến)

\(S_{ABM}=S_{ACM}\)(đpcm)

b) Xét tam giác ABM và tam giác ABC có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)

⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)

Thanh Trọng Nông
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 8:41

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF;AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng vói ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

Thầy Tùng Dương
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 1 2021 lúc 9:31

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

Khách vãng lai đã xóa

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

Khách vãng lai đã xóa
Phạm Thu Trang
19 tháng 2 2021 lúc 10:08

Kẻ đường kính BD.

ta có góc A = góc D ( góc nội tiếp chắn cung BC) 

=> sinA = sin D

có tam giác BCD vuông tại C => sinD = BD/BC

=> sinA = 2R/a

=> a/sinA=2R 

CMTT ta có b/sinB =2R

c/sinC=2R 

do đó a/sinA=b/sinB=c/sinC=2R

Khách vãng lai đã xóa