Cho tam giác ABC nhọn (BC= a, AB= c, AC= b). Chứng minh rằng SABC =\(\frac{1}{2}\)b.csinA
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)
\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)
=>\(BC^2=AB^2+AC^2-AB\cdot AC\)
2:
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AF=AB/AC
góc EAF chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)
=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)
=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)
=>\(S_{BFEC}=3\cdot S_{AFE}\)
Cho tam giác ABC nhọn : BC= a; AB= b ; AC= b. Chứng minh
SABC= 1/2 b.c. sin A
= 1/2 a.c. sin B
=1/2 a.b. sin C
kẻ đường cao AH. Ah= h
khi đó: tam giác ACH vuông tại H có
sin C = h/b
=> a.b.sin C= a.h
=> 1/2 a.b. sin C = a.h/2= SABC
Cho tam giác nhọn ABC , các đường cao BE và CF a, chứng minh tam giác AEB đồng dạng với tam giác AFC. Từ đó suy ra AF. AB=AE.AC b, chứng minh góc AEF=ABC c, nếu tam giác ABC có có góc A=60°. Chứng minh rằng SABC=4SAEF
Cho tam giác ABC có 3 góc nhọn, BC=a, AC=b, AB=c.
a) Chứng minh rằng: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) \(S_{ABC}=\frac{1}{2}bc.sinA\)
c) Cho đường cao AH=h.
Chứng minh rằng: cotg B + cotg C = 2 khi và chỉ khi a=2h
a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
NHỚ TK MK NHA
Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp tronh đường tròn (O,R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E,F là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
a) chứng minh các tứ giác ABHF và BMFO nội tiếp.
b)chứng minh HE//BD.
c) chứng minh SABC= AB.AC.BC trên 4R (SABC là diện tích tam giác ABC)
Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
a) Kẻ đường cao AH
Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)
Mà BM = CM (do M là trung điểm của BC )
\(\Rightarrow S_{ABM}=S_{ACM}\)
b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
Cho tam giác nhọn ABC các đường cao AD, BE, CF cắt nhau đang cần gấp tại H a/Chứng minh tam giác AEB đồng dạng với TAM GIAC AFC. Từ đó suy ra AF.AB = AE. AC b/Cho AE=3cm, AB=6cm. Chứng minh rằng SABc =4SAEF.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF;AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vói ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
(Định lý sin) Cho tam giác nhọn ABC có BC = a, AC = b, AB = c và nội tiếp đường tròn (O ; R). Chứng minh rằng:
$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}=2R$.
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : ; ;
;
(1)
Lại có :
(2)
Từ (1) và (2) ta có : (Đpcm)
Kẻ đường kính BD.
ta có góc A = góc D ( góc nội tiếp chắn cung BC)
=> sinA = sin D
có tam giác BCD vuông tại C => sinD = BD/BC
=> sinA = 2R/a
=> a/sinA=2R
CMTT ta có b/sinB =2R
c/sinC=2R
do đó a/sinA=b/sinB=c/sinC=2R