Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loi ngoc
Xem chi tiết
Hoàng Mạnh
1 tháng 12 2023 lúc 22:25

phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).

Ngọc Hân Cao Dương
Xem chi tiết
Akai Haruma
28 tháng 10 2023 lúc 23:58

$x,y$ là số nguyên hay có điều kiện gì không bạn nhỉ?

hoangtuvi
Xem chi tiết
Trên con đường thành côn...
16 tháng 7 2021 lúc 19:57

undefined

hồ nghĩa trường
Xem chi tiết
Lê Song Phương
7 tháng 1 2024 lúc 7:14

đk đã cho \(\Leftrightarrow\)\(8\left(x-2022\right)^2+y^2=25\)       (1)

Vì \(\left(x-2022\right)^2\ge0;y^2\ge0\) nên (1) suy ra:

\(8\left(x-2022\right)^2\le25\)

\(\Leftrightarrow\left(x-2022\right)^2\le\dfrac{25}{8}\)

Do \(x\inℤ\) nên suy ra \(\left(x-2022\right)^2\le3\)

\(\Rightarrow x-2022\in\left\{0;\pm1;\pm2;\pm3\right\}\)

\(\Rightarrow x\in\left\{2022;2023;2021;2024;2020;2025;2019\right\}\)

Nếu \(x=2022\Rightarrow y=\pm5\)

Nếu \(x\in\left\{2021;2023\right\}\) thì \(y^2=17\), vô lý.

Nếu \(\left|x-2022\right|\ge2\) thì \(8\left(x-2022\right)^2\ge32\) \(\Leftrightarrow25-y^2\ge32\) \(\Leftrightarrow y^2\le-7\), vô lý.

 Vậy có các cặp số (x; y) sau thỏa mãn:

 \(\left(2022;5\right),\left(2022;-5\right)\)

Kiều Vũ Linh
7 tháng 1 2024 lúc 7:16

Do (x - 2022)² ≥ 0 với mọi x R

8(x - 2022)² ≥ 0 với mọi x R

25 - y² ≥ 0

y² ≤ 25

⇒ y ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}

Do x, y ∈ Z nên (25 - y²) ⋮ 8

⇒ y ∈ {-5; -3; -1; 1; 3; 5}

⇒ (25 - y²) : 8 ∈ {0; 2; 3}

⇒ (x - 2022)² ∈ {0; 2; 3}

⇒ x - 2022 = 0

⇒ x = 2022

Vậy ta tìm được 2 cặp giá trị (x; y) thỏa mãn:

(2022; -5); (2022; 5)

Citii?
7 tháng 1 2024 lúc 8:41

\(x,y\in\left\{\left(2022;5\right)\left(2022;-5\right)\right\}\)

Tạ Duy Khoa
Xem chi tiết

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài

          

          

 

                        

                    

         

 

Phương Thảo Nhi
Xem chi tiết
0o0 Nguyễn Văn Cừ 0o0
29 tháng 7 2017 lúc 8:57

Chào bạn.Bận quá nên giờ mới check thấy bài này.Tuy muộn nhưng hi vọng sẽ giúp dc bạn 1 chút 
Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 
bạn làm tương tụ nhé bài gần giống thôi

Băng băng
29 tháng 7 2017 lúc 9:57

Chào bạn.Bận quá nên giờ mới check thấy bài này.Tuy muộn nhưng hi vọng sẽ giúp dc bạn 1 chút 
Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 
bạn làm tương tụ nhé bài gần giống thôi

Harry James Potter
Xem chi tiết
ST
11 tháng 7 2018 lúc 15:06

Ta có: \(25-8\left(x-2016\right)^2=\left(y-1\right)^2\Rightarrow8\left(x-2016\right)^2+\left(y-1\right)^2=25\)

Vì \(\left(y-1\right)^2\ge0\Rightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\)

Vì (x - 2016)2 là số chính phương 

=> (x - 2016)2 = 1 hoặc (x - 2016)2 = 0

Với \(\left(x-2016\right)^2=1\Rightarrow\left(y-1\right)^2=25-8=17\left(loại\right)\)

Với \(\left(x-2016\right)^2=0\Rightarrow x=2016\Rightarrow\left(y-1\right)^2=25\Rightarrow\orbr{\begin{cases}y-1=5\\y-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}y=6\\y=-4\end{cases}}}\)

Vậy các cặp (x;y) là (2016;6);(2016;-4)

Đinh Khánh Linh
Xem chi tiết
Dun Con
Xem chi tiết