Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nhi
Xem chi tiết
Lê Anh Tú
22 tháng 8 2017 lúc 21:53

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

Nguyễn Hoàng Phương Nhàn
Xem chi tiết
Never_NNL
25 tháng 6 2018 lúc 19:29

( n - 1 )( n + 1 ) - ( n - 7 )( n - 5 ) 

= ( n^2 + n - n - 1 ) - ( n^2 - 5n - 7n + 35 )

= n^2 - 1 - n^2 + 12n - 35

= -1 + 12n - 35

= 12n - 36

= 12( n - 3 ) \(⋮12\)

Nguyễn Tất Đạt
25 tháng 6 2018 lúc 19:22

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-\left(n^2-12n+35\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\)\(⋮12\)(đpcm).

Link Pro
Xem chi tiết
Link Pro
19 tháng 2 2016 lúc 13:34

Xin lỗi, mình nhầm phải là không chia hết cho 9.

Tran Khanh Linh
19 tháng 2 2016 lúc 13:36

Chia het cho may thi minh cung ko biet lam vi minh moi lop 5

Thu Hà
Xem chi tiết
Oo Bản tình ca ác quỷ oO
23 tháng 6 2016 lúc 16:36

ôi bó tay bn ơi mk mới lên lớp 8 nên ko bít!!

7876876897978089099875876

Nguyễn Trần Bắc Hải
23 tháng 6 2016 lúc 16:42

(n-1).(n+1)-(n-7).(n-5)

=n2-1-(n2-5n-7n+35)

=n2-1-n2+5n-7n-35

=-2n-36

Vậy với N thuộc Z thì (n-1).(n+1)-(n-7).(n-5) chia hết cho 12

Cô Hoàng Huyền
23 tháng 6 2016 lúc 17:00

Ta có: \(A=n^2-1-\left(n^2-7n-5n+35\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\) chia hết 12.

Trần Thu Trang
Xem chi tiết
Xyz OLM
24 tháng 7 2021 lúc 9:19

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

Khách vãng lai đã xóa
Trần Cẩm Thùy
Xem chi tiết
Võ Đông Anh Tuấn
14 tháng 7 2016 lúc 20:52

  Cái này đâu cần tới qui nạp. Giải theo Fertma là được: 
- Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7 
*Chú ý: A(k+1) nghĩ là biểu thức A có biến kà k+1 chứ ko phải là A nhân cho (k+1) nhé, tương tự A(n), A(k) cũng thế. 
Mình đã cố gắng nhưng có thể vẫn còn sai sót mong các bạn thông cảm. Chúc bạn vui vẻ ^^!!

Nguyễn Thị Phương Uyên
Xem chi tiết
Lê Nhật Khôi
5 tháng 8 2018 lúc 22:19

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Nguyễn Thị Phương Uyên
6 tháng 8 2018 lúc 10:57

Mik cảm ơn bn nhìu nha!!!!^-^!!!

Hoàng Yến Nhi
Xem chi tiết
Nguyễn Đỗ Xuân Nam
4 tháng 1 2015 lúc 9:21

ta thay (n+2) x (n+7) = n(2+7) = nx 9

ma 9 chia het cho 3

suy ra voi moi n x 9 thi chia het cho 3

Nguyen Anh Tuan
23 tháng 11 2017 lúc 21:24

n(n+2)(n+7)

=n[n(2+7)]

=n[n9]

Mà 9 chia hết cho 3 nên n[n9]chia hết cho 3

Vậy n(n+2)(n+7)chia hết cho 3

Việt Hoàng
12 tháng 1 2018 lúc 21:54

n.(n+2).(n+7)

= n.n.(2+7)

=n.n.9

Mà 9 chia hết cho 3

=> n.(n+2).(n+7)

Diệu Linh Trần Thị
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15