Chứng minh mọi n thuộc Z thì :n.(n+2)-(n-7)(n-5) chia hết cho 7\(\)
Chứng minh với mọi n thuộc Z thì :
n^5 - n chia hết cho 5
n^7 - n chia hết cho 7
n^3 - 3n^2 - n + 3 chia hết cho 48 ( n lẻ )
\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)
NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)
\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)
...
Đến đây thì bí rồi nhé
Chứng minh rằng với mọi n thuộc Z thì.
(n-1).(n+1)-(n-7).(n-5) chia hết cho 12
( n - 1 )( n + 1 ) - ( n - 7 )( n - 5 )
= ( n^2 + n - n - 1 ) - ( n^2 - 5n - 7n + 35 )
= n^2 - 1 - n^2 + 12n - 35
= -1 + 12n - 35
= 12n - 36
= 12( n - 3 ) \(⋮12\)
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-\left(n^2-12n+35\right)=n^2-1-n^2+12n-35\)
\(=12n-36=12\left(n-3\right)\)\(⋮12\)(đpcm).
Chứng minh rằng với mọi n thuộc Z thì (n-1)(n+2)+12 không chia hết cho 7
Xin lỗi, mình nhầm phải là không chia hết cho 9.
Chia het cho may thi minh cung ko biet lam vi minh moi lop 5
Chứng minh với mọi n thuộc z thì
(n-1).(n+1)-(n-7).(n-5) chia hết cho 12
ôi bó tay bn ơi mk mới lên lớp 8 nên ko bít!!
7876876897978089099875876
(n-1).(n+1)-(n-7).(n-5)
=n2-1-(n2-5n-7n+35)
=n2-1-n2+5n-7n-35
=-2n-36
Vậy với N thuộc Z thì (n-1).(n+1)-(n-7).(n-5) chia hết cho 12
Ta có: \(A=n^2-1-\left(n^2-7n-5n+35\right)=n^2-1-n^2+12n-35\)
\(=12n-36=12\left(n-3\right)\) chia hết 12.
Bài 3: Chứng minh với mọi n thuộc Z
a) (n-1).(n+1)-(n-7).(n-5) chia hết cho 12
b) n.(2n-3)-2n.(n+2) chia hết cho 5
a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5)
= n2 - 1 - (n2 - 12n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)
b) Ta có n(2n - 3) - 2n(n + 2)
= 2n2 - 3n - 2n2 - 2n
= - 5n \(⋮5\forall n\inℤ\)
Chứng minh n^7 - n chia hết cho 7 với mọi n thuộc Z
Cái này đâu cần tới qui nạp. Giải theo Fertma là được:
- Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
*Chú ý: A(k+1) nghĩ là biểu thức A có biến kà k+1 chứ ko phải là A nhân cho (k+1) nhé, tương tự A(n), A(k) cũng thế.
Mình đã cố gắng nhưng có thể vẫn còn sai sót mong các bạn thông cảm. Chúc bạn vui vẻ ^^!!
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Mik cảm ơn bn nhìu nha!!!!^-^!!!
Chứng minh rằng với mọi n thuộc N thì n. (n+2). (n+7) chia hết cho 3
ta thay (n+2) x (n+7) = n(2+7) = nx 9
ma 9 chia het cho 3
suy ra voi moi n x 9 thi chia het cho 3
n(n+2)(n+7)
=n[n(2+7)]
=n[n9]
Mà 9 chia hết cho 3 nên n[n9]chia hết cho 3
Vậy n(n+2)(n+7)chia hết cho 3
n.(n+2).(n+7)
= n.n.(2+7)
=n.n.9
Mà 9 chia hết cho 3
=> n.(n+2).(n+7)
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15