Rút gọn A=\(\left(\frac{x-1}{x^2-2x}\frac{x+1}{x^2+2x}\frac{4}{x^3-4x}\right):\frac{4040}{x}\)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
Rút gọn \(B=\left(x^4-x+\frac{x-3}{x^3+1}\times\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right)\times\frac{4x^2+6x+1}{\left(x+3\right)\left(4-x\right)}\)
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Rút gọn : A = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
B = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)
A = \(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right).\left(x+1\right)}-\frac{x+3}{2\left(x+2\right)}\right).\frac{4x^2-4}{5}\)
A = \(\left(\frac{\left(x+1\right)^2+3.2-\left(x+3\right).\left(x-1\right)}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4x^2-4}{5}\)
A = \(\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)
A = \(\frac{10}{2\left(x-1\right).\left(x+1\right)}.\frac{4\left(x-1\right).\left(x+1\right)}{5}\)
A = 4
Rút gọn biểu thức
1)\(\frac{c\left(a+c\right)-a\left(a-c\right)}{\frac{c}{a-c}-\frac{a}{a+ c}}\)
2) \(\frac{\frac{x^2-y^2}{x}}{\frac{1}{x}-\frac{1}{y}}\)
3) \(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
cho bt:
\(A=\left(\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right):\left(\frac{1}{x+2}+\frac{4x}{8-4x+2x^2-x^3}\right)\)
a) Rút gọn bt
b) Tìm giá trị của x để \(A< \frac{1}{5}\)
Rút gọn biểu thức sau:
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
^ Giúp tui nhanh zới nha! ^
=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]
={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]
=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]
=-x.x(x-2)(x+1)/2(2-x)x3
=(x+1)/2x
rút gọn
B\(\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?
Bạn tự tìm ĐKXĐ nhé!
\(B=\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
\(=\left(\frac{x}{\left(x-3\right)\left(x+2\right)}-\frac{x-1}{\left(x-3\right)\left(3x+5\right)}\right):\frac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}.\left(x-1\right)^2\)
\(=\left(\frac{\left(3x+5\right)x}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right).\frac{\left(3x+5\right)\left(x+2\right)}{\left(x-1\right)^2\left(x+1\right)^2}.\left(x-1\right)^2\)
\(=\frac{3x^2+5x-\left(x^2+2x-x-2\right)}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}.\frac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2}\)
\(=\frac{3x^2+5x-x^2-2x+x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2x^2+4x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2\left(x+1\right)^2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2}{x-3}\)
Vậy...
Rút gọn các phân thức :
a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
b) \(Q=\left[\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)
P/s : Giúp cháu nữa nha :33
a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{2\left(2x+1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}+\frac{3\left(2x+3\right)\left(2x-3\right)}{\left(2x+1\right)\left(2x+3\right)\left(2x-3\right)}-\frac{\left(6x+5\right)\left(2x+1\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{\left(4x+2\right)\left(2x-3\right)+3\left(4x^2-9\right)-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-8x-6+12x^2-27-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-24x-38}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
Check hộ mình xem nghi nghi sai sai
b) \(Q=\left(\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2x-1}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{2\left(x+1\right)\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2.3\left(2x-1\right)}{2\left(x-1\right)\left(x+1\right)\left(2x-1\right)}-\frac{\left(x+3\right)\left(2x-1\right)\left(x-1\right)}{2\left(x+1\right)\left(2x-1\right)\left(x-1\right)}\right).\frac{4x^2-4}{5}\)
\(=\frac{2\left(x+1\right)\left(x^2-1\right)+12x-6-\left(2x^2+5x-3\right)\left(x-1\right)}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2\left(x^3+x^2-x-1\right)+12x-6-2x^3-5x^2+3x+2x^2+5x-3}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2x^3+2x^2-2x-2+20x-2x^3-3x^2-9}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{-x^2+18x-11}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{-x^2+18x-11}{\left(2x-1\right)}.\frac{2}{5}\)
\(=\frac{-2x^2+36x-22}{5\left(2x-1\right)}\)