Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 23:54

4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)

\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)

Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Đàooooo
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 14:25

a: =>\(x^2\cdot2\sqrt{2}+x\left(2+2\sqrt{2}\right)+4=0\)

\(\text{Δ}=\left(2\sqrt{2}+2\right)^2-4\cdot2\sqrt{2}\cdot4=12-24\sqrt{2}< 0\)

=>PTVN

b: 

\(\Leftrightarrow2x^2+2x+\sqrt{3}-x^2+2\sqrt{3}x+\sqrt{3}=0\)

=>\(x^2+x\left(2\sqrt{3}+2\right)+2\sqrt{3}=0\)

\(\text{Δ}=\left(2\sqrt{3}+2\right)^2-4\cdot2\sqrt{3}=16>0\)

PT có hai nghiệm là;

\(\left\{{}\begin{matrix}x_1=\dfrac{-2\sqrt{3}-2-4}{2}=-\sqrt{3}-3\\x=\dfrac{-2\sqrt{3}-2+4}{2}=-\sqrt{3}+1\end{matrix}\right.\)

 

Hải Nam Xiumin
Xem chi tiết
Hậu Duệ Mặt Trời
20 tháng 7 2016 lúc 20:52

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

Hải Nam Xiumin
21 tháng 7 2016 lúc 6:58

cảm ơn bạn nha ok

....
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
16 tháng 6 2021 lúc 22:39

a) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)

     \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)

     \(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)

     \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)

  Vậy ...

      

Yết Thiên
Xem chi tiết
Ngọc Hà
Xem chi tiết
santa
28 tháng 12 2020 lúc 17:00

1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}-2\sqrt{3}=\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)

\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)

\(M=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(M=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)

\(N=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(N=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4-x+9+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(N=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)

\(N=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne4\end{matrix}\right.\)

 \(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)

\(Q=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)

\(Q=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4+\sqrt{x}-8-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(Q=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)

\(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

p/s: sorry tại n' câu wa nên mình ko làm chi tiết đc =(( lần sau nhớ chia các câu ra cho dễ nhìn hơn nha, đánh hơi mỏi tay :'( có j ko hỉu cmt dưới nha

 

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 22:32

1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)

=>4x+8=3x-1

=>x=-9

2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)

=>8x-4=5x-7

=>3x=-3

=>x=-1

3: ĐKXD: x>=0

\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

=>\(x+\sqrt{x}-6=x-1\)

=>căn x=-1+6=5

=>x=25

4: ĐKXĐ: x>=0

PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

=>x-2*căn x-3=x-4

=>-2căn x-3=-4

=>2căn x+3=4

=>2căn x=1

=>căn x=1/2

=>x=1/4

bach nhac lam
Xem chi tiết
Vũ Huy Hoàng
1 tháng 7 2019 lúc 16:34

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

tthnew
1 tháng 7 2019 lúc 17:02

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

bach nhac lam
1 tháng 7 2019 lúc 16:10

tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm

Quoc Tran Anh Le

giúp mk vs!

mk cảm ơn nhiều!

Linh_Chi_chimte
Xem chi tiết