cho tam giác ABC vuông A, hai đường phân giác BE và CF cắt nhau ở D
a) chứng minh: BE.CF=2BD.CD
b) vẽ đường cao AH, đường trung tuyến BM sao cho AH,BM,CF đông quy. Tính tỉ số AB/AC
a) Cho tam giác ABC, vẽ đường thẳng đi qua A cắt cạnh BC tại K và cắt trung tuyến BM tại I sao cho BI : IM = 1:2 Tính tỉ số diện tích của tam giác ABK và diện tích tam giác ABC
b) Cho tam giác ABC có ba đường cao AD, BE và CF thỏa mãn AD + BC = BE + AC = CF + AB
Chứng minh tam giác ABC là tam giác đều
a) cho ABC ,vẽ đường thẳng đi qua A cắt BC tại K và cắt trung tuyến BM tại I sao cho BI:IM= 1:2 Tính ti số diện tích của tam giác ABK và điện tích tam giác ABC b) Cho tam giác ABC có 3 đường cao AD,BE,CF thỏa mãn AD+BC=BE+AC=CF+AB Chứng minh tam giác ABC là tam giác đều
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác góc A tại H. Đường thẳng này cắt AB tại E và AC tại F.Vẽ BM // EF.
a) Chứng minh: MF=BE=CF
b)Qua D vẽ đường thẳng vuông góc với BC cắt AH tại I. Chứng minh:IF vuông góc AC
Cho tam giác ABC nhọn. Kẻ các đường cao BE và CF cắt nhau tại H.
1) Chứng minh A E . A C = A F . A B v à Δ A E F ∽ Δ A B C .
2) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. AH cắt BC tại D. Chứng minh B D 2 = A D . D M .
3) Cho A C B ^ = 45 0 và kẻ AK vuông góc với EF tại K. Tính tỉ số S A F H S A K E .
4) Chứng minh: A B . A C = B E . C F + A E . AF
cho tam giác abc có 3 góc nhọn ab<ac . kẻ đường cao ad vẽ điểm m sao cho ab là đường trung trực dm, vẽ n sao cho ac là đường trung trực dn.
a, chứng minh tam giác amn cân
b, đường thẳng mn cắt ab ,ac lần lượt ở e và d. CHứng minh DA là tia phân giác góc EDF
c, chứng minh EB là tia phân giác DÈ.
d, chứng minh BE vuông góc AC.
e, chứng minh ad, be, cf đồng quy.
a) Vì MD là trung trực AB trong ∆AMD
=> ∆AMD cân tại A
=> AM = AD
Vì DN là trung trực AC trong ∆ADN
=>∆ADN cân tại A
=> AD = AN
Mà AM = AD
=> AM = AN
=> ∆AMN cân tại A
Cho tam giác ABC nhọn. Kẻ các đường cao BE, CF giao nhau tại H.
a) Chứng minh: AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC.
b) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. Ah cắt BC tại D. Chứng minh: BD^2=AD.DM.
c) Cho góc ACB = 45 độ và kẻ AK vuông góc EF tại K. Tính tỉ số giữa S AFH/ S AKE.
d) Chứng minh: AB.AC = BE.CF + AE. AF
Cho tam giác ABC nhọn ( AB < AC ) có hai đường cao BE, CF cắt nhau tại H.
Gọi D là giao điểm của AH và BC.
Chứng minh tam giác AEB đồng dạng tam giác AFC và AH. CD = HE. AC
Chứng minh DA là phân giác của góc EDF
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, AH vuông góc BE, CF cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.