a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Cho tam giác nhọn ABC, AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC. Đường thẳng EF và BC cắt nhau tại D
a. chứng minh tam giác AFH đồng dạng tam giác AFC
b.chứng minh AH^2=AE.AB
c.chứng minh tam giác AEF đồng dạng tam giác ACB
d.Giả sử diện tích tam giacs EHF bằng ba lần diện tích tam giác DHE. tínhtỉ số HE/HF
Cho tam giác ABC nhọn, có hai đường cao BM và CN cắt nhau tại H.
a) CMR: AM. AC = AN. AB
b) Chứng minh hai tam giác AMN và ABC đồng dạng
c) Gọi P là giao điểm của AH với BC. CMR: PH là phân giác của góc MPN
d) Đường thẳng MN cắt BC tại D. CMR: DN. PM = DM. PN
Cho tam giác ABC vuông tại A , đường cao AH .Đường phân giác củ góc ABC cắt AC tại D và cắt AH tại E A) Chứng minh tam giác ABC đồng dạng tam giácHBA và AB^2=BC.BH B) biết AB =9cm, BC= 15cm. Tính DC và AD C) gọi I là trung điểm của ED .Chứng minh : BIH=ACB Hộ mk với ạ 😢 Vẽ hình hộ mik luôn mai mik thi òi ạ Thank m.n
Cho ∆ABC vuông tại A, đường cao AH. Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a)Chứng minh: tam giác ABC đồng dạng tam giác HBA và AB2 = BC.BH
b)Biết AB = 9cm, BC = 15cm. Tính DC và AD
c)Gọi I là trung điểm của ED. Chứng minh: góc BIH = góc ACB.
Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2
cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH. Gọi M là trung điểm của AC, BM cắt AH tại I. vẽ AK vuông góc với BM tại K,
a) chứng minh : tam giác BHI đồng dạng với tam giác AKI và IB. IK = IA.IH
b) chứng minh: góc BAH = góc BKH
c) tia AK cắt BC tại D. Chứng minh: HD.KC = HK.DC
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Cho tam giác ABC vuông tại A và có đường cao AH.
a/ Chứng minh AHC đồng dạng với BAC và suy ra AH.BC=AB. AC
b/ Gọi CD là đường phân giác của góc ACB (D thuộc cạnh AB). CD cắt AH tại E. Chứng minh rằng: tam giác ACE đồng dạng với tam giác BCD.
c/ Gọi I là trung điểm của đoạn thẳng DE. Chứng minh rằng: AI vuông góc DE
Cho tam giác ABC,AB=6cm,AC=8cm,AH là đường cao a)tính độ dài cạnh BC b)chứng minh tam giác HAB đồng dạng với tam giác HAC c)trên cạnh BC lấy điểm E sao cho CE=4cm,chứng minh BE^2=BH.BC d)tia phân giác của góc ABC cắt AC tại D.Tính diện tích tam giác CED Các bạn giúp mk vs mk cảm ơn trước