tìm gtnn \(5x^2+y^2+z^2-4x-2xy-z-1\)
tìm gtnn của M=\(5x^2+y^2+z^2-4x-2xy-z-1\)
\(M=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(z^2-z+\frac{1}{4}\right)-\frac{5}{4}\)
\(M=\left(x-y\right)^2+\left(2x-1\right)+\left(z-\frac{1}{2}\right)^2-\frac{5}{4}>=-\frac{5}{4}\)
=>M min\(=-\frac{5}{4}\)
<=>x=y=z=1/2
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
tìm x,y,z để C=5x2+y2+z2-4x-2xy-z-1 đạt GTNN
Ta có \(C=5x^2+y^2+z^2-4x-2xy-z-1\)
\(=x^2-2xy+y^2+4x^2-4x+1+z^2-z+\dfrac{1}{4}-1-\dfrac{1}{4}-1\)
\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
Ta có \(\left(x-y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(z-\dfrac{1}{2}\right)^2\ge0\)
=> \(C\ge-\dfrac{9}{4}\)
=> C đạt giá trị nhỏ nhất là \(-\dfrac{9}{4}\) khi
\(\left\{{}\begin{matrix}x-y=0\\2x-1=0\\z-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{2}\\x=\dfrac{1}{2}\\z=\dfrac{1}{2}\end{matrix}\right.\)
=> \(x=y=z=\dfrac{1}{2}\)
Vậy MinC = \(-\dfrac{9}{4}\)khi x=y=z = \(\dfrac{1}{2}\)
tìm GTNN của M=\(5x^2+y^2+z^2-4x-2xy-z-1\)
\(M=5x^2+y^2+z^2-4x-2xy-z-1\)
\(=\left(4x^2-4x+1\right)+\left(x^2-2xy+y^2\right)+\left(z^2-z+\dfrac{1}{4}\right)-\dfrac{9}{4}\)
\(=\left(2x-1\right)^2+\left(x-y\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy \(M_{min}=-\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Cho 3x^2+y^2+2xy-16x-4y+22=0 . Tính D= 1/𝑥𝑦
Cho 4x^2+2y^2+z^2+14=2(xz+ỹ+5x+4y) . Tính E=x+y+z
Câu 1 tìm x
x(x-2)(x+2)-(x+2)(x^2-2x+4)=4
Câu 2 tìm gtnn của biểu thức
a)A=4x^2-12x+46/5
b)B=x^2-2xy+6y^2-12x+2y+45
c)P=(x+y+z)(1/x+1/y+1/z) biết x,y,z là các số dương
Cần gấp .ai giúp mik vs
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
5x(x-1)-3x(x-1)
4x^2-25
X^2-x-y^2-y
X^2-2xy+y^2-z^2
a,5x(x-1)-3x(x-1)
=(5x-3x)(x-1)
=2x(x-1)
b,4x^2-25
=(2x)^2-5^2
=(2x-5)(2x+5)
c,x^2-x-y^2-y=(x^2-y^2)-(x+y)
= (x-y)(x+y)-(x+y)
=(x+y)(x-y-1)
d, x^2-2xy+y^2-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
Tìm GTNN của các biểu thức sau:
D=x2+y2+4x-2y-1
E=2x2+y2+2xy-4y+2x+z2-2xz-6z+14