Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen dinh thi
Xem chi tiết
đề bài khó wá
1 tháng 12 2019 lúc 10:09

bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?

Áp dụng BĐT Cô - si, ta có :

\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:

\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)

\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)

Cộng 3 vế BĐT => đpcm

Khách vãng lai đã xóa
Pham Hoàng Lâm
Xem chi tiết
Mr Lazy
12 tháng 10 2015 lúc 18:14

Áp dụng bất đẳng thức Mincpoxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

(có thể chứng minh bằng biến đổi tương đương)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{a}+\frac{1}{b}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}\)

Xét biểu thức trong căn.

\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2\)

\(=\left(a+b+c\right)^2+\frac{16}{\left(a+b+c\right)^2}+\frac{65}{\left(a+b+c\right)^2}\)

\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{16}{\left(a+b+c\right)^2}}+\frac{65}{2^2}=\frac{97}{4}\)

\(\Rightarrow VT\ge\frac{\sqrt{97}}{2}.\)

Đẳng thức xảy ra khi 3 biến bằng nhau.

Đinh Thị Ngọc Anh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Hồng Phúc
15 tháng 10 2020 lúc 22:48

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
Trương Quang Bảo
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Vũ Thu Mai
Xem chi tiết
Lê Chí Cường
12 tháng 10 2017 lúc 21:56

Áp dụng bđt Holder, ta có:

\(\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right).\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right)\left[a^2b^2\left(a^2+b^2\right)+b^2c^2\left(b^2+c^2\right)+c^2a^2\left(c^2+a^2\right)\right]\ge\left(ab+bc+ca\right)^3=\frac{\left(a^2+b^2+c^2\right)^3}{8}\)

=>\(VT^2\ge\frac{1}{8}.\frac{\left(a^2+b^2+c^2\right)^3}{a^2b^4+a^4b^2+b^2c^4+b^4c^2+c^2a^4+c^4a^2}\)

Đặt a2=x, b2=y, c2=z

=>\(VT^2\ge\frac{1}{8}.\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\)(1)

Theo bđt Schur, ta có:

\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)

<=>\(x^3+y^3+z^3+3xyz\ge x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\)

<=>\(x^3+y^3+z^3+6xyz+3\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\ge4.\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)+3xyz\)

Vì \(xyz=\left(abc\right)^2\ge0\)

=>\(\left(x+y+z\right)^3\ge4\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\)

=>\(\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\ge4\)

Thay vào (1)=>\(VT^2\ge\frac{1}{2}=>VT\ge\frac{1}{\sqrt{2}}\)

=>ĐPCM

Rio Va
13 tháng 10 2017 lúc 16:39

a,b,c>=0 mới được nhé

Đặt biểu thức là A

\(\sqrt{\frac{ab}{a^2+b^2}}=\frac{\sqrt{ab\left(a^2+b^2\right)}}{a^2+b^2}>=\frac{\sqrt{2abab}}{a^2}=\frac{\sqrt{2}ab}{a^2+b^2}\)

Dấu = xảy ra khi có một trong 2 số a,b =0 hoặc a=b.

Tương tự=> A>=\(\frac{\sqrt{2}ab}{a^2+b^2}+\frac{\sqrt{2}bc}{b^2+c^2}+\frac{\sqrt{2}ca}{a^2+c^2}\)

\(\sqrt{2}A>=\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ca}{c^2+a^2}\)

\(\sqrt{2}A+3>=\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}.\)

>=\(\frac{\left(2a+2b+2c\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=4.\)

=>A>=1/căn 2

Dấu = xảy ra khi 2 số bằng nhau, một số =0

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2021 lúc 20:27

ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou

hộ mình với:(

Khách vãng lai đã xóa
laala manaka
11 tháng 9 2021 lúc 20:29

= mìnk ko biết

sorry

Khách vãng lai đã xóa
Cao Thi Thuy Duong
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 22:56

\(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)

\(P\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}=\frac{1}{1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\ge\frac{1}{1+\left(a+b+c\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa