Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Username2805
Xem chi tiết
Minh Thư
7 tháng 10 2019 lúc 21:35

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)

\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)

\(\Leftrightarrow x+y\ge8\)(1)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\sqrt{xy}\ge4\)(2)

Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)

Nguyễn Linh Chi
10 tháng 10 2019 lúc 15:50

Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.

bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha

Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.

nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)

Minh Thư
10 tháng 10 2019 lúc 15:52

Em cảm ơn cô ạ

Username2805
Xem chi tiết
lê duy mạnh
7 tháng 10 2019 lúc 21:21

tích cho t nha

Username2805
7 tháng 10 2019 lúc 21:22

làm đi r le duy manh

cherry moon
Xem chi tiết
Lê Song Phương
Xem chi tiết
Xyz OLM
7 tháng 2 2022 lúc 18:25

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa
Xyz OLM
7 tháng 2 2022 lúc 18:32

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

Khách vãng lai đã xóa
Minh Triều
Xem chi tiết
Trần Đức Thắng
16 tháng 1 2016 lúc 22:39

Áp dụng bđt bu nhi a cốp xki : 

\(\left(2x^2+y^2\right)\left(\left(\sqrt{2}\right)^2+\left(1\right)^2\right)\ge\left(\sqrt{2}.\sqrt{2}x+y.1\right)^2=\left(2x+y\right)^2\)

=> \(\sqrt{2x^2+y^2}\ge\frac{1}{\sqrt{3}}\left(2x+y\right)\) => \(\frac{\sqrt{2x^2+y^2}}{xy}\ge\frac{1}{\sqrt{3}}\cdot\frac{2x+y}{xy}=\frac{1}{\sqrt{3}}\left(\frac{2}{y}+\frac{1}{x}\right)\)

CM tương tự với hai cái còn lại 

=> \(P\ge\frac{1}{\sqrt{3}}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\cdot\sqrt{3}=3\)

Dấu '' = '' xảy ra khi x = y =z = căn 3 

Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Nguyễn Thành Phát
Xem chi tiết
Nguyễn Thiều Công Thành
16 tháng 7 2017 lúc 22:32

bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy

bài này dài,ngại làm

đặt là được

Thắng Nguyễn
19 tháng 7 2017 lúc 16:25

Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath

Nguyễn Hoàng Dung
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Đặng Ngọc Quỳnh
19 tháng 7 2021 lúc 19:06

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

Khách vãng lai đã xóa
Nguyễn Lê Nhật Linh
Xem chi tiết
Võ Nhật Lê
1 tháng 3 2017 lúc 17:12

=0,5

Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3

Thay số và tính được gtnn là A=0.5

Thắng Nguyễn
1 tháng 3 2017 lúc 17:15

đây nhé Xem câu hỏi

huỳnh minh quí
2 tháng 3 2017 lúc 15:14

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{2\left(x+y+z\right)}{2}=x+y+z\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\)( 1 )

Xét \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)( 2 )

Từ ( 1 ) và ( 2 )

 \(\Rightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{1}{2}\)

Vậy GTNN của  \(A=\frac{1}{2}\)