Giải phương trình
\(\left(x^2-x\right)^2-5x^2+5x+\)4=0
Giải phương trình :
\(\left(x^2-3x+2\right)\left(x^2-1\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+4\right)=0\)
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
\(\Leftrightarrow\) \(\begin{cases}x^2-3x+2=0\\x^2-1=0\\x^2+5x+4=0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x=1\\x=-1\\x=-1\end{cases}\) hoặc \(\begin{cases}x=2\\x=1\\x=-4\end{cases}\) \(\Leftrightarrow\) \(x\in\left\{-4;-1;1;2\right\}\)
Vậy tập nghiệm của phương trình đã cho là T=\(\left\{-4;-1;1;2\right\}\)
Giải các phương trình:
\(a,\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(b,x^4-30x^2+31x-30=0\)
a, Đặt \(x^2-5x=a\)
\(\Rightarrow\)\(a^2+10a+24=0\)
\(\Rightarrow a^2+4a+6a+24=0\)
\(\Rightarrow\left(a+4\right)\left(a+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+4=0\\a+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2-5x+4=0\left(1\right)\\x^2-5x+6=0\left(2\right)\end{cases}}}\)
Giải pt (1) ta có : \(x^2-5x+4=0\)
\(\Rightarrow x^2-4x-x+4=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Giải pt (2) ta có : \(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy \(S=\left\{1;2;3;4\right\}\)
\(x^4-30x^2+31x-30=0\)
\(\Rightarrow x^4-30x^2+x+30x-30=0\)
\(\Rightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Mà \(x^2-x+1>0\)với \(\forall\)\(x\)
\(\Rightarrow x^2+x-30=0\)
\(\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow x\left(x-5\right)+6\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy \(S=\left\{5;-6\right\}\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
Giải phương trình: \(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)
\(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^2+3x+4x+12\right).4.\left(x-4\right)-\left(x+3\right)\left(x^2-x-4x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow4\left(x+4\right)\left(x+3\right)\left(x-4\right)-\left(x+3\right)\left(x-4\right)\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(4-x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(8-x\right)=0\)
\(\Leftrightarrow\frac{\orbr{\begin{cases}x+4=0\\x-4=0\end{cases}}}{\orbr{\begin{cases}x+3=0\\8-x=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-4\\x=4\end{cases}}}{\orbr{\begin{cases}x=-3\\x=8\end{cases}}}\)
Giải các phương trình
1,\(x\left(x-1\right)=2\left(x-1\right)\)
2, \(\left(x+2\right)\left(2x-3\right)=x^2-4\)
3, \(x^2+3x+2=0\)
4, \(5x^2+5x+3=0\)
5, \(x^3+x^2-12x=0\)
1, x(x-1)=2(x-1)
<=> x(x-1)-2(x-1)=0
<=> (x-2)(x-1)=0
<=>x=2 hoặc x=1
vậy ...
2, (x+2)(2x-3)=x^2 -4
<=>(x+2)(2x-3)=(x-2)(x+2)
<=> (x+2)(2x-3)-(x-2)(x+2)=0
<=> (x+2)(2x-3-x+2)=0
<=> x=-2 hoặc x=1
vây...
3,x^2 +3x +2=0
<=> x^2 +x+2x+2=0
<=>(x+2)(x+1)=0
<=> x=-2 hoặc x=-1
vậy ...
5, x^3+x^2-12x =0
<=> x(x^2+x-12)=0
<=>x(x^2-3x+4x-12)=0
<=>x(x+4)(x-3)=0
<=> x=0 hoặc x=-4 hoặc x=3
vậy ...
Giúp với: Giải phương trình
\(\left(x^2+5x-2\right)=4\left(x^2+2\right)\left(5x-4\right)\)
(x2+2+5x-4)=4(x2+2)(5x-4)
Đặt x2+2=a,5x-4=b
=>(a+b)2=4ab
=> a2-2ab+b2=0
=> (a-b)2=0
=> a=b
=> x2+2=5x-4
=> x2-5x+6=0
=> (x-2)(x-3)=0
=>\(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x^{2^{ }}-5y+4=0\\y^2-5x+4=0\end{matrix}\right.\)
Trừ vế cho vế:
\(x^2-y^2+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-x-5\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^2-5x+4=0\\x^2-5\left(-x-5\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=0\\x^2+5x+29=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=4\Rightarrow y=4\end{matrix}\right.\)
Giải phương trình: \(\left(2x^2+x-2014\right)^2+4\left(x^2-5x-2013\right)^2=4\left(2x^2+x-2014\right)\left(x^2-5x-2013\right)\)
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)