Cho P(x) là 1 đa thức xác định vs mọi x thoả:
\(x^P\left(x+1\right)=\left(x^2-4\right)P\left(x\right)\)
C/m: đa thức P(x) có ít nhất 3 nghiệm
cho đa thức f(x) xác định với mọi x thoả mãn:
\(x\times f\left(x+2\right)=\left(x^2-9\right)\times f\left(x\right)\)
1) tính f(5)
2) chứng minh rằng f(x) có ít nhất 3 nghiệm
1) Thay x=3 vào đẳng thức, thu được:
\(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)
\(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)
\(\Leftrightarrow\) \(f\left(5\right)=0\)
2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa
Thay x=0 Vào đẳng thức, thu được\(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)
\(\Leftrightarrow\) \(f\left(0\right)=0\)
\(\Rightarrow\)x=0 là ngiệm của f(x)
Thay x=-3 và đẳng thức, thu được\(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)
\(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)
\(\Leftrightarrow\)\(f\left(-1\right)=0\)
\(\Rightarrow\)x=-1 là nghiệm của f(x)
Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1
cho đa thức f(x) xác định với mọi x thỏa mãn:
\(x\cdot f\left(x+2\right)=\left(x^2-9\right)\cdot f\left(x\right)\)
a) tính giá trị của f(5)
b) CMR ;đa thức f(x) có ít nhất 3 nghiệm
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
1. Tìm nghiệm của các đa thức sau :
a) \(m\left(x\right)=x^2+7x-8\)
b) \(g\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
c) \(n\left(x\right)=5x^2+9x+4\)
2. Cho đa thức \(P\left(x\right)=mx-3\). Xác định m biết \(P\left(-1\right)=2\)
3. Cho đa thức \(Q\left(x\right)=-2x^2+mx-7m+3\). Xác định m biết Q(x) có nghiệm là -1.
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Cho đa thức bậc 2 \(P\left(x\right)\)có hệ số tỉ lệ cao nhất là 1 và thoả mãn \(\left(x-5\right)P\left(x+4\right)=\left(x+3\right)P\left(x\right)\)với mọi x . Tìm đa thức \(P\left(x\right)\)
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
Cho đa thức P(x) thỏa mãn điều kiện:\(\left(x-5\right)P\left(x+4\right)=\left(x+3\right)P\left(x\right)\) chứng minh rằng đa thức có ít nhất 2 nghiệm.
Thay x = -3 thì 1 là nghiệm của P(x)
Thay x = 5 thì 5 là nghiệm của P(x)
Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.
Chúc bạn học tốt.
Cho hàm số f(x) xác định với mọi x và thoả mãn : \(x.f\left(x+1\right)=\left(x^2-4\right).f\left(x\right)\)
CMR : f(x) = 0 có ít nhất 3 nghiệm