Tìm giá trị của tham số m để mọi x
ϵ [-1;1] đều là nghiệm của bất phương trình 3x2-2(m+5)x-m2+2m+8 ≤ 0
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
. Từ phương trình sau, tìm giá trị của tham số để phương trình:
i) Có nghiệm duy nhất
ii) Vô nghiệm
iii) Nghiệm đúng với mọi x ϵ R
iv) Có nghiệm.
(mx + 2)(x + 1) = (mx + m2 )x
Cho hàm số y= f(x) có đạo hàm f ' x = x - 1 2 x 2 - 2 x với mọi x ϵ ℝ Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f x 2 - 8 x + m có 5 điểm cực trị?
A. 16
B. 17
C. 15
D. 18
Tất cả các gia trị của tham số m để bất phương trình - x 2 + 2 x - 5 x 2 - m x + 1 ≤ 0 nghiệm đúng với mọi x ϵ R?
A. M
B. m ϵ (-2;2).
C. m ∈ ( - ∞ ; 2 ] ∪ [ 2 ; + ∞ )
D. m ϵ [-2;2].
a) Tìm tất cả các giá trị của tham số m để \(g\left(x\right)=4mx^2-4\left(m-1\right)x+m-3\) luôn luôn âm với mọi x thuộc R
b) Tìm tất cả các giá trị của tham số m để \(f\left(x\right)=x^2-2\left(m+2\right)x-2m^2+3m+4\) không âm với mọi m thuộc R
c) Bất pt \(x^2+2mx+m^2-5m+6>0\) ( m là tham số thực) có nghiệm với mọi x thuộc R khi \(m\in\left(-\infty;\dfrac{a}{b}\right)\) với \(a,b\in Z\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức a+2b
Tìm tất cả các giá trị thực của tham số m để f(x) = m(x - m) - (x - 1) không âm với mọi x ∈ (- ∞ ; m + 1].
A. m = 1
B. m > 1
C. m < 1
D. m ≥ 1
Chọn C.
m(x - m) - (x - 1) ≥ 0 ⇔ (m - 1)x ≥ m 2 - 1.
+) m = 1 ⇒ x ∈ R. (không thỏa)
+) Xét m > 1 thì (1) ⇔ x ≥ m + 1 không thỏa điều kiện nghiệm đã cho.
+) Xét m < 1 thì (1) ⇔ x ≥ m + 1 thỏa điều kiện nghiệm đã cho.
Vậy m < 1.
Cho phương trình log 2 2 x 2 - x + m x 2 + 1 = x 2 + x + 4 - m . Có bao nhiêu giá trị nguyên của tham số m ϵ [1;10] để phương trình có hai nghiệm trái dấu.
A. 7
B. 8
C. 6
D. 5
Tìm các giá trị của tham số m để mọi giá trị của x nhỏ hơn \(\dfrac{-1}{2}\) đều là nghiệm của bất phương trình (2m + 3).(x - m) > 4x - 3 + 2m
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
Tìm tất cả các giá trị của m đểm hàm số xác định với mọi x ϵ R
(m-1)x2-2(m-2)x+2-m > 0
`@TH1: m-1=0<=>m=1`
`=>2x+1 > 0<=>x > -1/2`
`=>m=1` loại
`@TH2: m-1 ne 0<=>m ne 1`
`=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`
`=>{(m-1 > 0),(\Delta' < 0):}`
`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`
`<=>{(m > 1),(3/2 < m < 2):}`
`=>3/2 < m < 2`