Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tuấn Hoàng
Xem chi tiết
Ami Mizuno
9 tháng 2 2022 lúc 12:44

Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...

Giả sử n=1 ta có: 

\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)

Giả sử n=2 ta có: 

\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)

Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\) 

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)

 

Đỗ Tuệ Lâm
9 tháng 2 2022 lúc 13:26

undefined

Black Angel _12_lucky
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết
alibaba nguyễn
10 tháng 11 2016 lúc 20:37

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

Quách Quỳnh Bảo Ngọc
Xem chi tiết
trần huyền my
2 tháng 4 2017 lúc 6:11

ko biết

Duartte Monostrose Neliz...
12 tháng 4 2017 lúc 21:38

*f(0) nguyên suy ra 0+0+c=c nguyên

*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên

*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)

Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)

Nguyễn Thanh MINH
18 tháng 7 2017 lúc 16:19

chưa học

nguyễn bùi vân anh
Xem chi tiết
Ngô Triệu Phong
Xem chi tiết
Akai Haruma
13 tháng 5 2023 lúc 23:36

Lời giải:

Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$

$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$

$\Rightarrow f(-2)=\frac{-3}{2}f(1)$

Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.

Marietta Narie
Xem chi tiết
Mai Anh
2 tháng 2 2022 lúc 14:20

Cho `x=0`

`=> f(0) = a.0^2 + b.0 + c`

`=> f(0) = c`

Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên

Cho `x=1`

`=> f(1) = a.1^2 + b.1+c`

`=> f(1)= a+b+c`  (1) 

Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên

Cho `x= -1`

`=> f(-1) = a.(-1)^2 + b.(-1)+c`

`=> f(-1) = a -b+c` (2)

Từ `(1)` và `(2)`

`=>f(1) + f(-1) =  a+b+c + a-b+c`

`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên

Mà `c` là số nguyên nên `2c` là số nguyên

`=> 2a` là số nguyên

Vậy `2a ; a+b ,c` là những số nguyên

Xem chi tiết
Nguyễn Linh Chi
22 tháng 2 2019 lúc 21:54

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)

 chịu 

Quyết
12 tháng 7 2021 lúc 16:17

Quá dễ

tạ nhiên
Xem chi tiết