Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt

Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2022 lúc 14:27

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Nguyễn Việt Lâm
20 tháng 1 2022 lúc 14:48

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

Phạm Quỳnh Anh 9a13-
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 19:00

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

Kim Taehyungie
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 22:21

a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)

\(=16-40\left(m-1\right)\)

\(=16-40m+40\)

=-40m+56

Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)

hay m<7/5

b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Nguyên
Xem chi tiết
long NKL
Xem chi tiết
Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 21:22

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

Lê Huỳnh Châu
Xem chi tiết
Nguyễn Nam Dương
1 tháng 2 2022 lúc 10:37

TL :

Đề sai

\(x1^2\)là số gì

HT

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 2 2022 lúc 17:19

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 2 2022 lúc 17:27

Xét pt \(x^2-2\left(m-4\right)x+2m-20=0\), có \(a=1;b=-2\left(m-4\right);c=2m-20\)

Ta có \(\Delta=b^2-4ac=\left[-2\left(m-4\right)\right]^2-4.1.\left(2m-20\right)\)
\(=4\left(m-4\right)^2-8m+80\)\(=4\left(m^2-8m+16\right)-8m+80\)\(=4m^2-32m+64-8m+80\)\(=4m^2-40m+144\)\(=4\left(m^2-10m+25\right)+44\)\(=4\left(m-5\right)^2+44\)

Do \(\left(m-5\right)^2\ge0\Leftrightarrow4\left(m-5\right)^2+44\ge44>0\Leftrightarrow\Delta>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt.

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2019 lúc 7:18

Đáp án B

Kim Taehyungie
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 22:13

\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)

\(=64+12\left(m-1\right)\)

=64+12m-12

=12m+52

a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì 

\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)

b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)