Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Thiên Yết
Xem chi tiết
Trà My
24 tháng 3 2019 lúc 12:26

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có

AB2 + AC2 = BC2

hay 62 + 82 = BC2

=> BC2 =36 + 64

=> BC2 =100

=> BC = 10 (cm)

Trà My
24 tháng 3 2019 lúc 12:28

b) Xét \(\Delta ABD\)và \(\Delta BDH\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD chung

Nguyễn Vũ Hoàng Trung
9 tháng 4 2019 lúc 21:07

Online Math là nhất

em yêu em Online Math

Tran Van Tai
Xem chi tiết
Vỹ Nguyễn
Xem chi tiết
Phương An
9 tháng 5 2016 lúc 11:40

Bạn tự vẽ hình nhaleu

a.

Tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (định lý Pytago)

\(BC^2=6^2+8^2\)

\(BC^2=36+64\)

\(BC^2=100\)

\(BC=\sqrt{100}\)

\(BC=10\)

b.

Xét tam giác ABD vuông tại A và tam giác HBD vuông tại H có:

BD là cạnh chung

ABD = HBD (BD là cạnh chung của ABH)

=> Tam giác ABD = Tam giác HBD (cạnh huyền - góc nhọn)

=> AD = HD (2 cạnh tương ứng)

c.

Xét tam giác ADK và tam giác HDC có:

KAD = CHD ( = 90 )

AD = HD (theo câu b)

ADK = HDC (2 góc đối đỉnh)

=> Tam giác ADK = Tam giác HDC (g.c.g)

=> KD = CD (2 cạnh tương ứng)

=> Tam giác DKC cân tại D

d.

Tam giác HDC vuông tại H có:

DC > DH (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà DH = DA (theo câu b)

=> DC > DA

Chúc bạn học tốtok

Uzumaki Nagato
9 tháng 5 2016 lúc 12:03

a)Ta có tam giac ABC vuông tại A ,áp dụng định lý Ta-lét ta có:BC2=AB2+AC2<=>BC2=82+62<=>BC=10

b)Ta có :BD là phân giác =>B1=B2;DH vuông góc với BC=>H1=H2=90O.Xét tam giác BAD vàBHD:

B1=B2;BD chung;A=H1=90O=>tam giác BAD=BHD=>DA=DH

c)S ở đâu

d)Ta có trong tam giác vuông DHC :DC>DH,HC ;mà DH=DA=>DC>DA


B A C 6 cm 8 cm D H 1 2 1 2

Nguyễn Quang Minh
Xem chi tiết
Nguyễn Thị Kim Ngân
14 tháng 5 2022 lúc 22:31

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

Nguyễn Quang Minh
14 tháng 5 2022 lúc 21:06

Câu 3 là phần c nha

 

Thêu Mai
23 tháng 2 2023 lúc 18:55

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

 cre baji

Phạm Ngọc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 19:15

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)

Suy ra: DH=DK(hai cạnh tương ứng)

OTP là thật t là giả
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 20:11

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

runtyler
Xem chi tiết
Nhật Hạ
25 tháng 2 2020 lúc 16:57

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

Khách vãng lai đã xóa
Nguyễn Linh Chi
25 tháng 2 2020 lúc 17:54

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

Khách vãng lai đã xóa
Lê Huy	Anh
Xem chi tiết
Dung TranDinh
4 tháng 5 2022 lúc 16:09

db

 

 

Hoàng Minh Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 20:17

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 20:18

b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 20:18

c) Ta có: ΔABD=ΔHBD(cmt)

nên DA=DH(hai cạnh tương ứng)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC

Không
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 14:02

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 14:04

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)