Cho tam giác ABC có 3 góc nhọn các đường cao BD, CE
a) CM: tam giác ABD đồng dạng với tam giác ACE
b) CM: tam giác ADE đồng dạng tam giác ABC
c) CM: Hai đường thẳng BC và DE cắt nhau tại F. CM: FD.FE=FB.FC
Cho mình hỏi với:
Cho tam giác ABC nhọn có AB<AC, góc BAC=60 độ. 2 đường cao BD và CE cắt nhau tại H, AH cắt BC tại K.
a; Cm: tam giác ABD đồng dạng tam giác ACE
b, CM: góc ADE đồng dạng góc ABC
c, CM: tam giác BKA đồng dạng tám giác BEC
d, CM: BH x BD + Ch x CE= 4DE2
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
Cho tam giác ABC nhọn , 2 đường cao BD, CE
a) CM tam giác ABD đồng dạng với tam giác ACE
b) CM tam giác AdE đồng dạng với tam giác ACE
c) biết góc ABD=30 độ , diện tích tam giác ADE = 30 cm vuông . Tính diện tích tam giác ABC
d) tia pg của góc ACB cắt AB tại K . CM <CA.CB
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: góc A=90-30=60 độ
ΔADE đồng dạng với ΔABC
=>S ADE/S ABC=(AD/AB)^2=1/4
=>S ABC=120cm2
Cho tam giác ABC có 3 góc nhọn và AB < AC . Vẽ hai đường cao BD và CE
a, CM : Tam giác ABD đồng dạng với tam giác ACE . Suy ra AB.AE=AC.AD
b, CM ; tam giác ADE đồng dạng tam giác ABC
c, Tia CE và CB cắt nhau tại I . Chứng minh tam giác IBE đồng dạng với tam giác IDC
d, Gọi O là trung điểm của BC . Chứng minh ID.IE = OI2−OC2
Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)
cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H a, CM tam giác ABD đồng dạng với tam giác ACE
b, chứng minh góc ADE = góc ABC
c, gọi K là giao điểm của AH và BC, F là giao điểm của DK và HC cm HE.CF=CE.HF
giúp phần c vs ạ
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Cho tam giác ABC nhọn, vẽ hai đường cao BDvà CE cắt nhau tại H.
a) CM tam giác ABD đồng dạng với tam giác ACE, câu này làm dc r
b) cm góc ADE bằng góc ABC
A) Xét tam giác ABD và tam giác ACE có :
\(\widehat{A}\)chung
\(\widehat{ADB}\)= \(\widehat{AEC}\)( giả thiết)
vậy tam giác ABD đồng dạng với tam giác ACE ( G-G)
B)Theo phần A ta có tam giác ABD đồng dạng với tam giác ACE nên :
\(\frac{AD}{AB}\)=\(\frac{AE}{AC}\)( ĐỊNH LÍ ĐẢO CỦA ta-LÉT)
TỪ ĐIỀU TRÊN SUY RA : tam giác ADE đồng dạng với tam giác ABC
vậy góc ADE = góc ABC
cho tam giác abc có 3 góc nhọn đường cao bd và ce cắt nhau tại h. a,cm tam giác abd đồng dạng tam giác ace . b,ch.ce=ccd.ca . c, kẻ ek vuông góc tại k và di vuông góc ec tại i ,cm ah song song ik
cho tam giác abc có 3 góc nhọn đường cao bd và ce cắt nhau tại h. a,cm tam giác abd đồng dạng tam giác ace . b,ch.ce=ccd.ca . c, kẻ ek vuông góc tại k và di vuông góc ec tại i ,cm ah song song ik
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔACE(g-g)
Cho tam giác ABC có đường cao BD và CE cắt nhau tại H
a) CM tam giác EHB đồng dạng vs tam giác DHC và HE.HC=HD.HB
b) CM tam giác ABD đồng dang vs tam giác ACE và AE.AB=AD.AC
c) CM tam giác AED đồng dạng vs tam giác ABC
d) ED cắt BC tại I. CM IE.ID=IB.IC
Cho tam giác ABC có 3 góc nhọn.Các đường cao BD,CE cắt nhau tại H.
a, CM: tam giác ABD đồng dạng vs tam giác ACE
b,CM: BH.HD=CH.HE
c,Nối D vs E,cho biết BC=a;AB=AC=b.Tính độ dài đoạn thẳng DE theo a;b.
a, Xét tg ABD và tg ACE có
góc A chung
góc ADB = góc AEC (=90)
=>tg ABD đồng dạng vs tg ACE (g-g)
b, tg HEB = tg HDC (g-g) (tự cm nha) => HE/HD = HB/HC
=> HE.HC = HB.HD
a) Xét tam giác ABD và tam giác ACE có:
Góc A chung; \(\widehat{ADB}=\widehat{AEC}=90^2\)
\(\Rightarrow\Delta ADB\)đồng dạng \(\Delta ACE\left(gg\right)\)
b) Xét tam giác BHE và tam giác CHD có
\(\hept{\begin{cases}\widehat{BHE}=\widehat{CHD}\left(đ^2\right)\\\widehat{BEH}=\widehat{CDH}=90^o\end{cases}}\)
=> tam giác BHE đồng dạng với tam giác CHD (g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HE}{HD}\Rightarrow BH\cdot HD=CH\cdot HE\)
c) Khi AB=AC=b thì tam giác ABC cân tại A
=> DE//BC => \(\frac{DE}{BC}=\frac{AD}{AC}\)
\(\Rightarrow DE=\frac{AD\cdot BC}{AC}\)
Gọi giao của Ah và BC là F
=> \(AF\perp BC,FB=FC=\frac{a}{2}\)
Tam giác DBC đồng dạng tam giác FAC => \(\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow DC=\frac{BC\cdot FC}{AC}=\frac{a^2}{2b}\)
\(\Rightarrow DE=\frac{AD\cdot BC}{AC}=\frac{\left(AC-DC\right)BC}{AC}=\frac{\left(b-\frac{a^2}{ab}\right)a}{b}=\frac{a\left(2b^2-a^2\right)}{2b^2}\)