Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-4x-6y+5=0\) . Đường thẳng d qua A(3;2) và cắt (C) tại 2 điểm M,N phân biệt sao cho MN ngắn nhất có phương trình là gì ?
Giúp mình với sắp thi rồi
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) X^2 + Y^2 -4x+6y-3=0 viết phương trình tiếp tuyến với đường tròn (C) biết rằng tiếp tuyến song song với đường thẳng (d) 4x-3y+22=0
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
Câu 1: trong mặt phẳng có tọa độ Oxy, cho đường thẳng d: 3x - 2y + 1 = 0. Tìm ảnh của đường thẳng d qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) = (2;-1).
Câu 2: trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 - 4x + 6y + 5 = 0. Tìm ảnh của (C) qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) = (-3;5).
Câu 1:
Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$
\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)
Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:
$3(x'-2)-2(y'+1)+1=0$
$\Leftrightarrow 3x'-2y'-7=0$
Câu 2:
$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.
Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$
Khi đó, $M'=T_{\overrightarrow{v}}(M)
\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)
PTĐTr $(C')$ có dạng:
$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$
$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$
Trong mặt phẳng Oxy, cho đường tròn (C):x2+y2 -4x+6y-3=0. Tìm ảnh của đường tròn (C) qua phép quay tâm A(-3;2), góc quay -180 độ
Trong mặt phẳng Oxy, cho điểm A(1;2), B(2;4), C(−1;3) và đường thẳng (d) : x + y - 5 = 0 và đường tròn (C) : ((x - 2) ^ 2) + (y + 1) ^ 2 = 4 . a. Tìm ảnh của vec A qua phép tịnh tiến theo vec v = (3; 1) . b. Tìm đường thẳng (d') là ảnh của đường thẳng (d) qua phép tịnh tiến theo a = 3i - 2j C. Tìm đường tròn (C') là ảnh của đường tròn (C) qua phép tịnh tiến theo AB . d. Tìm vec u, biết T vec u (B) = C
a: Ảnh của A là:
x=1+3=4 và y=2+1=3
b: (d') là ảnh của (d) qua phép tịnh tiến vecto a=(3;-2)
=>(d'): x+y+c=0
Lấy B(1;4) thuộc (d)
=>B'(4;2)
Thay x=4 và y=2 vào (d'), ta được:
c+4+2=0
=>c=-6
d: Theo đề,ta có:
2+x=-1 và 4+y=3
=>x=-3 và y=-1
=>vecto u=(-3;-1)
trong mặt phẳng oxy, cho đường tròn \(\left(C_m\right):x^2+y^2-4x-6y=m-12\) và đường thẳng \(d:2x+y-2=0\). Biết rằng (Cm) cắt d theo một dây cung có độ dài bằng 2. khẳng định nào dưới đây đúng?
A. \(m\in\left(3\sqrt{2};6\right)\)
B. m < 2
C. \(m\in\left(2;3\right)\)
D. m > 8
Trong mặt phẳng tọa độ Oxy cho đường (C) có phương trình x 2 + y 2 - 4 x + 6 y - 3 = 0 . Qua phép vị tự tâm H(1;3) tỉ số k = -2, đường tròn (C) biến thành đường tròn (C’) có phương trình.
A. x 2 + y 2 + 2 x − 30 y + 160 = 0
B. x 2 + y 2 − 2 x − 30 y + 162 = 0
C. x 2 + y 2 + 2 x − 30 y + 162 = 0
D. x 2 + y 2 − 2 x − 30 y + 160 = 0
( C ) ⇒ ( x − 2 ) 2 + ( y + 3 ) 2 = 16 tâm I(2;-3); bán kính R=4
V H ; − 2 I = I ' x ; y ⇔ H I ' → = − 2 H I →
I’(-1; 15)
R’= |k|R = |-2| . 4 = 8
Vậy phương trình đường tròn (C) là: x + 1 2 + y − 15 2 = 64
Hay x 2 + y 2 + 2 x − 30 y + 162 = 0
Đáp án C
Trong mặt phẳng với hệ toạ độ Oxy cho đường tròn C có phương trình: x^2+y^2-4x+8y-5=0. Viết ptrinh đường thẳng vuông góc với đường thẳng d:3x-4y+12=0 và cắt đường tròn C theo một dây cung có độ dài bằng 8
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.
Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2 + y 2 − 2 x + 6 y + 6 = 0 .
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0.
Lấy một điểm trên d, chẳng hạn N(0; 9).
Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).
Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),
bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).
Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x − 3 2 + y − 1 2 = 4 .
Mọi người ơi giúp mình với ạ, mình cảm ơn rất nhiều
Trong mặt phẳng tọa độ Oxy có cho đường tròn (C): x2+y2+4x-6y-12=0 và điểm A (2;0) (Aϵ(C)). Viết phương trình đường thẳng đi qua A cắt đường tròn (C) tại điểm thứ hai B sao cho AB = 5\(\sqrt{2}\)
\(\left(C\right):x^2+y^2+4x-6y-12=0\)
\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)
\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)
Kẻ IH vuông góc với AB.
\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)
Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)
\(\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho các điểm A(4;-3), B(4;1) và đường thẳng (d): x + 6y = 0. Viết phương trình đường tròn (C) đi qua A và B sao cho tiếp tuyến của đường tròn tại A và B cắt nhau tại một điểm thuộc (d).