Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Pê
Xem chi tiết
senorita
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Minh Nguyen
26 tháng 6 2020 lúc 8:28

Góc AM?? Mình tính luôn ^AMB và ^AMC nhé !

Xét \(\Delta ABC\)có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)(theo định lý tổng 3 góc trong của 1 tam giác)

\(\Rightarrow\widehat{BAC}+30^o+15^o=180^o\)

\(\Rightarrow\widehat{BAC}=135^o\)

Vì AM là đường trung tuyến của \(\widehat{BAC}\)

\(\Rightarrow\widehat{MAB}=\widehat{MAC}=\frac{\widehat{BAC}}{2}=\frac{135^o}{2}=67,5^o\)

Xét \(\Delta AMB\)có : \(\widehat{MAB}+\widehat{B}+\widehat{AMB}=180^o\)(đ/lý tổng 3 góc trong của 1 tam giác)

\(\Rightarrow67,5^o+30^o+\widehat{AMB}=180^o\)

\(\Rightarrow\widehat{AMB}=82,5^o\)

\(\Rightarrow\widehat{AMC}=180^o-\widehat{AMB}=180^o-82,5^o=97,5^o\)(Vì \(\widehat{AMB}+\widehat{AMC}=180^o\))

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 6 2020 lúc 10:24

A B C M N

Trên mặt phẳng bờ BC chưa A  lấy điểm N  sao cho \(\Delta\)NCM đều 

=> ^CMN = 60 độ 

=> ^NMB = 120 độ 

Mà NM = MC = BM 

=> \(\Delta\)NMB cân tại tại B => ^NBM = 30 độ=> ^CBN = 30 độ mà ^CBA = 30 độ 

=> M; A; N thẳng hàng 

Xét \(\Delta\)CBN có: ^NCB = 60 độ ; ^CBN = 30 độ 

=> ^CNB = 90 độ 

=> ^CNA = 90 độ 

mà ^ACN = ^MCN - ^MCA = 45 độ 

=> \(\Delta\)NCA vuông cân tại N 

=> NC = NA  mà NC = NM 

=> NA = NM => \(\Delta\)NAM cân tại N  có: ^MNA = 30 độ => ^NMA = ^NAM = ( 180 - 30 ) : 2 = 75 độ 

=> ^CAM = ^NAM - ^NAC = 75 - 45 = 30 độ 

=> ^NAB = 180 - 30  - 15 - 30 =  105 độ 

Khách vãng lai đã xóa
Đào Thế Vũ
26 tháng 6 2020 lúc 11:02

Lưu ý: Sử dụng định lý sin asinA=bsinB=csinC=2Rasin⁡A=bsin⁡B=csin⁡C=2R(trong đó , a, b, c lần lượt là các cạnh đối đỉnh của góc A, B, C, R là bán kính đường tròn ngoại tiếp tam giác)

Công thức tính đường trung tuyến: m2A=2(AB2+AC2)−BC24mA2=2(AB2+AC2)−BC24(trong đó mAmA là đường trung tuyến kẻ từ góc A)

Công thức tính diện tích tam giác bằng: 1212 tích hai cạnh góc bên nhân sin góc xen giữa

Bài làm:

Bài 1: Theo tính chất tổng 3 góc trong tam giác ˆC=180o−ˆA−ˆB=60oC^=180o−A^−B^=60o

Theo định lý sin ta có:

ABsinC=ACsinB⇒ABAC=sinCsinB=√3√2ABsin⁡C=ACsin⁡B⇒ABAC=sin⁡Csin⁡B=32

Bài 2: ABsinC=ACsinB⇒AC=ABsinBsinC=3√2ABsin⁡C=ACsin⁡B⇒AC=ABsin⁡Bsin⁡C=32

Bài 3: AC=ABsinBsinC=3√3√2AC=ABsin⁡Bsin⁡C=332
Bài 4: AB=ACsinCsinB=5√2AB=ACsin⁡Csin⁡B=52
Bài 5: AB=ACsinCsinB⇒AB=√6AB=ACsin⁡Csin⁡B⇒AB=6
Bài 6: AM2=2(AB2+AC2)−BC24⇒BC=2√17AM2=2(AB2+AC2)−BC24⇒BC=217
Bài 7: SΔABC=12AB.AC.sinA=3√3⇒ˆA=60oSΔABC=12AB.AC.sin⁡A=33⇒A^=60o

imagerotate

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
25 tháng 9 2023 lúc 16:49

Tham khảo:

 

a) Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} =  - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)

\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.

b) 

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)

+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).

Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)}  \approx 40\)

+) Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)

c) 

Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)

Áp dụng định lí cosin trong tam giác BCD, ta có:

\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)

Hưng_11
Xem chi tiết
Trần Trung Nguyên
Xem chi tiết
Võ Hà
Xem chi tiết
Nguyễn Minh Trí
Xem chi tiết
Nguyễn Minh Trí
12 tháng 3 2023 lúc 21:59

ai trl cho mik vs a mik can gap 

 

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:32

Tham khảo:

a) Ta có: \(\widehat {AMB} + \widehat {AMC} = {180^o}\)

\( \Rightarrow \cos \widehat {AMB} =  - \cos \widehat {AMC}\)

Hay \(\cos \widehat {AMB} + \cos \widehat {AMC} = 0\)

b) Áp dụng định lí cos trong tam giác AMB ta có:

 \(\begin{array}{l}A{B^2} = M{A^2} + M{B^2} - 2MA.MB\;\cos \widehat {AMB}\\ \Leftrightarrow M{A^2} + M{B^2} - A{B^2} = 2MA.MB\;\cos \widehat {AMB}\;\;(1)\end{array}\)

Tương tự, Áp dụng định lí cos trong tam giác AMB ta được:

\(\begin{array}{l}A{C^2} = M{A^2} + M{C^2} - 2MA.MC\;\cos \widehat {AMC}\\ \Leftrightarrow M{A^2} + M{C^2} - A{C^2} = 2MA.MC\;\cos \widehat {AMC}\;\;(2)\end{array}\)

c) Từ (1), suy ra \(M{A^2} = A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}\;\)

Từ (2), suy ra \(M{A^2} = A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}\;\)

Cộng vế với vế ta được:

\(2M{A^2} = \left( {A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}} \right)\; + \left( {A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}} \right)\;\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - M{B^2} - M{C^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MC\;\cos \widehat {AMC}\)

Mà: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\( \Rightarrow 2M{A^2} = A{B^2} + A{C^2} - {\left( {\frac{{BC}}{2}} \right)^2} - {\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MB\;\cos \widehat {AMC}\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - 2.{\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\left( {\cos \widehat {AMB} + \;\cos \widehat {AMC}} \right)\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\)

\(\begin{array}{l} \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\) (đpcm)

Hà Quang Minh
24 tháng 9 2023 lúc 15:32

Cách 2:

Theo ý a, ta có: \(\cos \widehat {AMC} =  - \cos \widehat {AMB}\)

Từ đẳng thức (1): suy ra \(\cos \widehat {AMB} = \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

 \( \Rightarrow \cos \widehat {AMC} =  - \cos \widehat {AMB} =  - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

Thế \(\cos \widehat {AMC}\)vào biểu thức (2), ta được:

\(M{A^2} + M{C^2} - A{C^2} = 2MA.MC.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\)

Lại có: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\(\begin{array}{l} \Rightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} = 2MA.MB.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} =  - \left( {M{A^2} + M{B^2} - A{B^2}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} + M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{B^2} = 0\\ \Leftrightarrow 2M{A^2} - A{B^2} - A{C^2} + {\frac{{BC}}{2}^2} = 0\\ \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\\ \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\)