Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vu Tran
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2021 lúc 22:14

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\) (1)

Tam giác SAB vuông cân tại A (do SA=SB=a)

\(\Rightarrow AM\perp SB\) (trung tuyến đồng thời là đường cao) (2)

(1);(2)\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\)

Hoàn toàn tương tự ta có \(AN\perp SC\)

\(\Rightarrow SC\perp\left(AMN\right)\Rightarrow\left(SAC\right)\perp\left(AMN\right)\)

Từ A kẻ \(AH\perp SC\Rightarrow H\in\left(AMN\right)\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)

\(\Rightarrow\widehat{HAC}\) là góc giữa (AMN) và (ABCD)

\(AC=a\sqrt{2}\) ; \(SC=a\sqrt{3}\)

\(sin\widehat{HAC}=cos\widehat{SCA}=\dfrac{AC}{SC}=\sqrt{\dfrac{2}{3}}\Rightarrow\widehat{HAC}\approx54^044'\)

Hạ Vy
Xem chi tiết
Hạ Vy
14 tháng 6 2016 lúc 10:57

Từ M kẻ MI//CN =>d(CN,MI)= d(C;SAD)= CD. Yếu tố góc 60 mình không biết có phải thừa hay ko?

Hạ Vy
28 tháng 6 2016 lúc 9:33

bài mình được chữa đây. mn ai thích thì tham khảo nhé. Hay và khó ạ!

P S T Q B D C A M H K I a

Hạ Vy
28 tháng 6 2016 lúc 9:55

Sửa đề bài: d(AM,CN). MS=MD. NS=NB

SAD ΩSBC =PT. Kẻ TQ //AM. =>AM// (TCQ). d(AM,CN)=d(A, TCQ)

Từ T kẻ TH //SA. Từ H kẻ HK vuông với QC => QC vuông với THK. Kẻ HI vuông với TK => HI vuông với TCQ =>d (H, TCQ)= HI. Mặt #, \(\frac{d\left(A,TCQ\right)}{d\left(H,TCQ\right)}\)\(\frac{AQ}{AH}\)   => Tính HI => Có: TH= SA->Tính HK? 

Có: QHK ∞ QDC. => \(\frac{HK}{CD}\) = \(\frac{QH}{QC}\) 

QH= AD= AH=1/3QD.( Do PTHD là hcn=> PT= DH, có ST =AH(STAH: hbh) , PS= QH(PTAQ: hbh, ST=AH), PS= AD(PSAD:hbh, do M: TĐ SD, AP (SM=AM, SPA vuông tại S) ->PS=ST=AD=AH=HQ=> HK

Tú Anh Nguyễn
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 5:33

* Ta có SA ⊥ (ABCD) nên AM là hình chiếu của SM trên mặt phẳng (ABCD)

* ΔABCcó AB = BC = a ( vì ABCD là hình thoi) và  nên ΔABC đều.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 11:25

Đáp án B

Nguyễn Mai Khánh Huyề...
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 21:54

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SMA}\) là góc giữa SM và đáy

\(\Rightarrow\widehat{SMA}=60^0\Rightarrow SA=AM.tan60^0=\sqrt{3a^2+\left(\dfrac{2a}{2}\right)^2}.\sqrt{3}=2a\sqrt{3}\)

Qua B kẻ đường thẳng song song AM cắt AD kéo dài tại E

\(\Rightarrow AM||\left(SBE\right)\Rightarrow d\left(AM;SB\right)=d\left(AM;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Từ A kẻ \(AH\perp BE\) , từ A kẻ \(AK\perp SH\Rightarrow AK=d\left(A;\left(SBE\right)\right)\)

\(\widehat{DAM}=\widehat{AEB}\) (đồng vị) , mà \(\widehat{BAH}=\widehat{AEB}\) (cùng phụ \(\widehat{ABH}\))

\(\Rightarrow\widehat{DAM}=\widehat{BAH}\)

\(\Rightarrow AH=AB.cos\widehat{BAH}=AB.cos\widehat{DAM}=\dfrac{AB.AD}{AM}=\dfrac{2a.a\sqrt{3}}{2a}=a\sqrt{3}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}=\dfrac{1}{3a^2}+\dfrac{1}{12a^2}=\dfrac{5}{12a^2}\)

\(\Rightarrow AK=\dfrac{2a\sqrt{15}}{5}\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 21:55

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2017 lúc 14:05

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 10 2017 lúc 17:03

Chọn đáp án C.

Gọi O là tâm của hình vuông ABCD thì  B D ⊥ S A O