Bài 3: Khái niệm về thể tích của khối đa diện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Vy

Cho hình chóp SABCD có ABCD là hình vuông cạnh a, SA vuông góc với ABCD. Góc giữa SB ,(ABCD) = 60. Gọi M,N lần lượt là trung điểm của SB,SD. Tính khoảng cách giữa hai đường thẳng AN và CM?

Hạ Vy
14 tháng 6 2016 lúc 10:57

Từ M kẻ MI//CN =>d(CN,MI)= d(C;SAD)= CD. Yếu tố góc 60 mình không biết có phải thừa hay ko?

Hạ Vy
28 tháng 6 2016 lúc 9:33

bài mình được chữa đây. mn ai thích thì tham khảo nhé. Hay và khó ạ!

P S T Q B D C A M H K I a

Hạ Vy
28 tháng 6 2016 lúc 9:55

Sửa đề bài: d(AM,CN). MS=MD. NS=NB

SAD ΩSBC =PT. Kẻ TQ //AM. =>AM// (TCQ). d(AM,CN)=d(A, TCQ)

Từ T kẻ TH //SA. Từ H kẻ HK vuông với QC => QC vuông với THK. Kẻ HI vuông với TK => HI vuông với TCQ =>d (H, TCQ)= HI. Mặt #, \(\frac{d\left(A,TCQ\right)}{d\left(H,TCQ\right)}\)\(\frac{AQ}{AH}\)   => Tính HI => Có: TH= SA->Tính HK? 

Có: QHK ∞ QDC. => \(\frac{HK}{CD}\) = \(\frac{QH}{QC}\) 

QH= AD= AH=1/3QD.( Do PTHD là hcn=> PT= DH, có ST =AH(STAH: hbh) , PS= QH(PTAQ: hbh, ST=AH), PS= AD(PSAD:hbh, do M: TĐ SD, AP (SM=AM, SPA vuông tại S) ->PS=ST=AD=AH=HQ=> HK


Các câu hỏi tương tự
Tên Họ
Xem chi tiết
Tên Họ
Xem chi tiết
diện -thuận-
Xem chi tiết
Quỳnh Mai
Xem chi tiết
Hồ Trần Ngọc Trân
Xem chi tiết
Chy Chy
Xem chi tiết
Nhók Lì Lợm
Xem chi tiết
Kim Ngân
Xem chi tiết
Trang Truong
Xem chi tiết