Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thanh Hoàng
Xem chi tiết
Huy Phan Đình
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
YangSu
15 tháng 6 2023 lúc 16:06

\(M=\left[x+\left(y-z\right)-2x\right]+y+z-\left(2-x-y\right)\)

\(=-x+y-z+y+z-2+x+y\)

\(=3y-2\)

\(N=x-\left[x-\left(y-z\right)-x\right]\)

\(=x-\left(-y+z\right)\)

\(=x+y-z\)

\(M+N=3y-2+x+y-z=x+4y-z-2\)

\(M-N=\left(3y-2\right)-\left(x+y-z\right)\)

\(=3y-2-x-y+z\)

\(=-x+2y+z-2\)

lynguyenmnhthong
15 tháng 6 2023 lúc 16:14

\(M=\left[x+\left(y-z\right)-2x\right]+y+z-\left(2-x-y\right)\\ M=x+y-z-2x+y+z-2+x+y\\ M=3y-2\)

 

\(N=x-\left[x-\left(y-z\right)-x\right]\\ N=x-\left(x-y+z-x\right)\\ N=x-x+y-z+x\\ N=x+y-z\)

 

\(M+N=3y-2+x+y-z\\ M+N=x+4y-z-2\)

 

\(M-N=3y-2-\left(x+y-z\right)\\ M-N=3y-2-x-y+z\\ M-N=-x+2y+z-2\)

bùi thị thùy linh
Xem chi tiết
bùi thị thùy linh
29 tháng 11 2019 lúc 18:32

mik đag cần gấp các bn giải nhanh dùm mik nha

Khách vãng lai đã xóa
Mai Huyền My
Xem chi tiết
Nguyễn Anh Ngọc
Xem chi tiết
Thảo Phương
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2020 lúc 0:31

Ủa pt hàm là \(f\left(f\left(x\right)+y\right)=2x+f\left(f\left(x\right)-y\right)\) hay \(f\left(f\left(x\right)+y\right)=2x+f\left(f\left(y\right)-x\right)\) vậy bạn?

Vì nếu pt hàm là \(f\left(f\left(x\right)+y\right)=2x+f\left(f\left(x\right)-y\right)\)

Nếu ta thế \(y=0\) thì:

\(f\left(f\left(x\right)\right)=2x+f\left(f\left(x\right)\right)\Leftrightarrow2x\equiv0\) điều này vô lý nên ko thể tồn tại 1 hàm như vậy

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:43

1a.

\(2P=1-\frac{bc}{2a^2+bc}+1-\frac{ca}{2b^2+ca}+1-\frac{ab}{2c^2+ab}\)

\(\Rightarrow2P=3-\left(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\right)\)

\(\Rightarrow2P=3-\left(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2b^2ca+c^2a^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\right)\)

\(\Rightarrow2P\le3-\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=3-1=2\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:44

1b.

\(Q=\frac{a^2}{5a^2+b^2+c^2+2bc}+\frac{b^2}{5b^2+a^2+c^2+2ca}+\frac{c^2}{5c^2+a^2+b^2+2ab}\)

\(Q=\frac{a^2}{a^2+b^2+c^2+\left(2a^2+bc\right)+\left(2a^2+bc\right)}+\frac{b^2}{a^2+b^2+c^2+\left(2b^2+ca\right)+\left(2b^2+ca\right)}+\frac{c^2}{a^2+b^2+c^2+\left(2c^2+ab\right)+\left(2c^2+ab\right)}\)

\(\Rightarrow Q\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

Theo kết quả câu a ta có:

\(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\le1\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\right)=\frac{1}{3}\)

\(Q_{max}=\frac{1}{3}\) khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 15:44

2.

Do \(x+y+z=\frac{3}{2}\Rightarrow x< \frac{3}{2}< 2\)

Ta có:

\(VT=x+x.4y\left(\frac{1}{2}+z\right)\le x+x\left(\frac{1}{2}+z+y\right)^2=x+x\left(\frac{1}{2}+\frac{3}{2}-x\right)^2\)

\(\Leftrightarrow VT\le x+x\left(2-x\right)^2=x^3-4x^2+5x\)

\(\Leftrightarrow VT\le x^3-4x^2+5x-2+2=\left(x-1\right)^2\left(x-2\right)+2\le2\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;\frac{1}{2};0\right)\)

Khách vãng lai đã xóa
huyen vu thi
Xem chi tiết