P=(1/1.2+1/3.4+1/5.6+1/59.60).31.32.33...59.60 chia hết cho 91
1,A= 1/2.15+3/2.11+ 4/1.11+5/2.1
2,Cho P= (1/1.2+ 1/3.4+ 1/5.6.........1/59.60).31.32.33......59.60
Chứng minh P chia hết cho 61
Bài 1: Cho A= 1.2.3.....29.30; B= 31.32.33.....59.60
a)Chứng minh rằng B chia hết cho 230
b) chứng minh rằng B-A chia hết cho 61
Bài 2: Cho phân số:\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
Chứng minh rằng: a chia hết cho 151
I.Tìm x, biết :
a) -(7/4) x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)=22
b) 137x137x chia hết cho 13
II. So sánh :
a)A= 1/2.3/4.5/6. ... . 99/100 và B= 2/3.4/5.6/7. ... . 100/101
b) Cho : A=1/1.2+1/3.4+1/5.6+...+1/59.60
B=1/31+1/32+1/33+...+1/60
Hãy so sánh A và B ?
III. Cho các góc nhọn AOB và AOC có số đo theo thứ tự bằng 80o và 40o. Vẽ tia OE nằm giữa hai tia OA,OB sao cho BOE=60o. Tia OE là tia phân giác của góc nào ? Vì sao ?
IV.Tìm số nguyên n sao cho C= 2n+11 / n-1 cũng là số nguyên
V.Biết rằng số tự nhiên n chỉ có đúng 3 ước số. Hãy chững tỏ rằng số tự nhiên n đó là một số chính phương.
VI.Tìm các số tự nhiên x,y thỏa mãn x^2+x-89=5^y
Chứng minh: 1/1.2+1/3.4+1/5.6+...+1/59.60= 1/31+1/32+...+1/60
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{59}+\frac{1}{60}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{60}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
Tính
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{59\cdot60}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{69}-\frac{1}{60}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
So sánh A và B :
A=1/31 + 1/32 + 1/33+....+1/60
B=1/1.2+1/3.4+1/5.6+.....1/59.60
\(\text{Có 3 trường hợp có thể xảy ra:}\)
\(A=B\)
\(A< B\)
\(A>B\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(Mà:\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}.10=\frac{1}{4}\left(\text{10 số hạng}\right)\)
\(\text{Tương tự}:\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow A>\frac{37}{60}\)
\(Mà\)\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)
\(\Rightarrow A>\frac{3}{5}\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{31}.10=\frac{10}{30}=\frac{1}{3}\left(\text{10 số hạng}\right)\)
\(\Rightarrow A< \frac{4}{5}\)
\(\Rightarrow\frac{3}{5}< A< \frac{4}{5}\)
\(\text{Mik chỉ pít làm z!!!☺}\)
Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{59.60}\) Chứng tỏ A > \(\dfrac{7}{12}\)
Tinh A : 1.2 + 3.4 + 4.5 + 5.6 + 6.7 +..... +58.59 +59.60
\(A=1.2+2.3+3.4+4.5+...+59.60\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+59.60.\left(61-58\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+59.60.61-58.59.60\)
\(\Rightarrow3A=59.60.61\)
\(\Rightarrow A=\frac{59.60.61}{3}\)
1/1.2+1/2.3+1/3.4+...+1/59.60= /60
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}=1-\dfrac{1}{60}=\dfrac{59}{60}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{59\cdot60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(=1-\dfrac{1}{60}=\dfrac{59}{60}\)