Chứng minh rằng:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
tính nhanh
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
B=\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
các bn giúp mk nha
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
Tính: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\)
1, Tính
a, B=\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + . . . + \(\dfrac{1}{2007.2008}\)
b, Q= \(\dfrac{7}{1.3}\) + \(\dfrac{7}{3.5}\) + . . . + \(\dfrac{7}{2009.2011}\)
c, S= \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ . . . + \(\dfrac{1}{3^{5000}}\)
Tính tổng
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Cho \(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
Chứng tỏ \(A>\dfrac{65}{132}\)
\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)
Giup với mai KT ròi.
Thanks nha.
1,Tính
a, A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + . . . + \(\dfrac{1}{2017.2018}\)
b,B = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\) + \(\dfrac{5}{6.8}\) + . . . + \(\dfrac{5}{2016.2018}\)
c. C = \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\) + \(\dfrac{1}{108}\) + . . . + \(\dfrac{1}{990}\)