cho đa thức f(x)=x^3+ax^2+bx-2 xác định các hệ số a, biết đa thức có nghiệm x1=-1 và x2=1
cho đa thức f(x)=ax^2+bx+c xác định hệ số a,b,c biết đa thức có 2 nghiệm x1=1: x2=2
`Answer:`
`f(x)=ax^2+bx+c`
Do đa thức `f(x)` có hai nghiệm là `x_1=1;x_2=2`
`=>(x-1)(x-2)=0`
`<=>x^2-2x-x+2=0`
`<=>x^2-3x+2=0`
Mà `f(x)=ax^2+bx+c`
Đồng nhất hệ số ta được \(\hept{\begin{cases}a=1\\b=-3\\c=2\end{cases}}\)
cho đa thức f(x) = \(x^3\) + \(ax^3\) + bx - 2
xác định nghiệm của hệ số a,b viết đa thức có 2 nghiệm x1 = -1; x2 = 1
Ta có \(f\left(x\right)\)có nghiệm là -1
=> \(f\left(-1\right)=0\)
=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)
=> \(-1-a-b-2=0\)
=> \(-3-a-b=0\)
=> \(-a-b=3\)
=> \(-\left(a-b\right)=3\)
=> \(a-b=-3\)
=> \(a=-3+b\)(1)
và f (x) cũng có nghiệm là 1
=> \(f\left(1\right)=0\)
=> \(1^3+a.1^3+b-2=0\)
=> \(1+a+b-2=0\)
=> \(-1+a+b=0\)
=> \(a+b=1\)(2)
Thế (1) vào (2), ta có:
\(-3+b+b=1\)
=> \(-3+2b=1\)
=> \(2b=1+3\)
=> \(2b=4\)
=> \(b=2\)
=> \(a=-3+2=-1\)
Bài: a) Xác định đa thức f(x) = ax + b biết f(2) = - 4 ; F(3) = 5.
b) Xác định a và b biết nghiệm của đa thức G(x) = x2 – 1 là nghiệm của đa thức Q(x) = x3 + ax2 + bx – 2
Cho f(x)=ax^2+bx+c xác định a b c biết đa thức có hai nghiệm là x1=1 x2=2
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~
cho đa thức f(x) = x3 +ax2+bx-2
Xác định hệ số a,b biết đa thức có 2 nghiệm x1= -1; x2 = 1
Giải giúp mình với! Mình đang cần gấp !!!!!!! :3
làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!
:((((((((((
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
Cho đa thức f(x)=x^2+ax+b. Xác định hệ số a,b biết đa thức có 2 nghiệm: x1=1; x2=2
cái nãy sai cái này mói đúng nè nha Jiyoen Phạm
ta có \(f\left(x_1\right)=1^2+a.1+b=1\Rightarrow1+a+b=1\Rightarrow a+b=0\)
\(f\left(x_2\right)=2^2+a.2+b=2\Rightarrow4+2a+b=2\Rightarrow2a+b=-2\)
Ta có (2a+b)-(a+b)= -2-0
Cái này mới đúng nè nha
=> 2a+b-a-b= -2
=> a=-2
Thay a= -2 vào biểu thức a+b=0 ta được -2+b=0 => b=2
Vậy a=-2 ; b=2
ta có
\(f\left(x_1\right)=1^2+a.1+b=1\Rightarrow a+b=1\) (1)
\(f\left(x_2\right)=2^2+a.2+b=2\Rightarrow4+2a+b=2\Rightarrow2a+b=-2\) (2)
Từ 1 và 2 suy ra (2a+b)-(a+b)=-3\(\Rightarrow2a+b-a-b=-3\)
\(\Rightarrow a=-3\)
thay a=-3 vào 1 ta được -3+b=1\(\Rightarrow b=1-\left(-3\right)=4\)
Vậy a=-3 ; b=4
Cho đa thức : f (x) = x^3 ax^2 + bx -2
Xác định các hệ số a ,b biết đa thức có 2 nghiệm x1 = -1 và x2= -2
Gỉai hộ mình với ạ ! Mai mình thi rồi :(
Thay x=-1:
\(-1-a-b-2=0\)\(\Leftrightarrow a+b=-3\left(1\right)\)
Thay x=-2:
\(\left(-2\right)^3+a\left(-2\right)^2+\left(-2\right)b-2=-10+4a-2b=0\)\(\Leftrightarrow4a-2b=10\left(2\right)\)
Từ (1)(2):\(\left\{{}\begin{matrix}a+b=-3\\4a-2b=10\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\frac{2}{3}\\b=\frac{-11}{3}\end{matrix}\right.\)
cho đa thức f(x)=x^3+ax^2+bx-2-y
a) xác định a,b biết đa thức có 2 nghiệm là -1 và 1
b)tìm nghiệm còn lại của f(x)