Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Marietta Narie
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 1:05

a: Xét ΔABM vuông tại B và ΔANM vuông tại N có 

AM chung

\(\widehat{BAM}=\widehat{NAM}\)

Do đó:ΔABM=ΔANM

Suy ra: AB=AN

b: Xét ΔIMB vuông tại B và ΔCMN vuông tại N có

MB=MN

\(\widehat{IMB}=\widehat{CMN}\)

Do đó: ΔIMB=ΔCMN

c: Ta có: ΔIMB=ΔCMN

nên BI=NC

Ta có: AB+BI=AI

AN+NC=AC

mà AB=AN

và BI=NC

nên AI=AC

hay ΔAIC cân tại A

hoang phuc lam
Xem chi tiết
PTN (Toán Học)
17 tháng 2 2020 lúc 19:00

a,Ta có : ABC^+BAC^+BCA^=180* ( đl tổng 3 góc )

=> 90*+BAC^+30*=180*

=>BAC^=180*-120*=60* 

Do AM là tia p/g của BAC^

=> BAM^=MAN^=60*/2=30*

Xét tam giác vuông ABM và tam giác vuông ANM 

AM cạnh chung

BAM^=MAN^

=>tam giác ABM = tam giác ANM ( ch-gn )

=>AB=AN (2 cạnh tương ứng)

b,Xét tam giác vuông IBM và tam giác vuông CNM 

BMI^=NMC^ ( đối đỉnh )

BM = NM ( cm câu a )

=> tam giác IBM = tam giác CNM ( cgv-gn )

c, Ta có : BMI^ + MBI^ + BIM ^ = 180*

=>BMI^ + 90* + 30* = 180* 

=> BMI^=180*-120*=60*

Do BMI^=CMN^

=>BMI^=CMN^=60*

Lại có IMN^=180* ( góc bẹt )

Mà : IMC^+CMN^=180*

=>IMC^=180*-60*=120* 

Mặt khác : IM=MC (cm câu b)

=> tam giác IMC cân tại M

=>MIC^=MCI^ 

dễ thấy : IMC^+MIC^+MCI^=180*

=>MIC^+MCi^=180*-120*=60*

do :MIC^=MCI^

=>MIC^=MCI^=60*/2=30*

Ta có :+)AIC^=BIM^+CIM^=30*+30*=60*

           +)ACI^=NCM^+MCI^=30*+30*=60*

           +)IAC^=60*

=>tam giác IAC là tam giác đều

Khách vãng lai đã xóa
Trần Thảo Vy
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 23:31

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Cường Hoàng
Xem chi tiết
Nguyễn Tiến Minh
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
Vũ Nhật
Xem chi tiết
Trương ido
30 tháng 3 2021 lúc 21:14

a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)

            BD chung

            góc ABD = góc EBD ( BD là tia p/g của góc B)

do đó :  tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )

Nguyễn Lê Phước Thịnh
30 tháng 3 2021 lúc 21:21

b) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(Hai cạnh tương ứng)

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADM}=\widehat{EDC}\)(Hai góc đối đỉnh)

Do đó: ΔADM=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DM=DC(Hai cạnh tương ứng)

Xét ΔDMC có DM=DC(cmt)

nên ΔDMC cân tại D(Định nghĩa tam giác cân)

Vũ Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2021 lúc 20:18

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Đinh Sơn
Xem chi tiết