Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
elisa
Xem chi tiết
đô bao
Xem chi tiết
Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 22:47

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=3mx+1-m^2\)

\(\Leftrightarrow x^2-3mx+m^2-1=0\)

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt

\(\Leftrightarrow\text{Δ}\ge0\)

\(\Leftrightarrow\left(-3m\right)^2-4\cdot1\cdot\left(m^2-1\right)\ge0\)

\(\Leftrightarrow9m^2-8m^2+4\ge0\)

\(\Leftrightarrow m^2+4\ge0\)(luôn đúng)

Suy ra: (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1\cdot x_2=m^2-1\\x_1+x_2=3m\end{matrix}\right.\)

Theo đề, ta có phương trình: \(3m=2\cdot\left(m^2-1\right)\)

\(\Leftrightarrow2m^2-2-3m=0\)

\(\Leftrightarrow2m^2-4m+m-2=0\)

\(\Leftrightarrow2m\left(m-2\right)+\left(m-2\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\2m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+x_2=2x_1x_2\) thì \(m\in\left\{2;-\dfrac{1}{2}\right\}\)

ntkhai0708
21 tháng 3 2021 lúc 22:51

Xét phương trình hoành độ giao điểm parabol $(P)$ và đường thẳng $(d)$

Có: $x^2=3mx+1-m^$

$⇔x^2-3mx+m^2-1=0(1)$

Xét phương trình (1) có dạng $ax^2+bx+c=0$ với
$\begin{cases}a=1 \neq 0\\b=-3m\\c=m^2-1\end{cases}$

$⇒pt(1)$ là phương trình bậc hai một ẩn $x$

Có $\delta=b^2-4ac=9m^2-4.1.(m^2-1)=5m^2+4>0 \forall m$

suy ra $pt(1)$ có 2 nghiệm phân biệt $x_1;x_2$

Theo hệ thức Viete có: $\begin{cases}x_1+x_2=\dfrac{-b}{a}=3m\\x_1.x_2=\dfrac{c}{a}=m^2-1\end{cases}$

Nên $x_1+x_2=2x_1.x_2$

$⇔3m=2.(m^2-1)$

$⇔2m^2-3m-2=0$

$⇔(m-2)(2m+1)=0$

$⇔$\(\left[{}\begin{matrix}m=2\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy $m∈2;\dfrac{-1}{2}$ thỏa mãn đề

 

33. Nguyễn Minh Ngọc
Xem chi tiết
Đoàn Đức Hà
23 tháng 4 2022 lúc 16:45

Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(P\right)\) là: 

\(x^2=2mx+3\Leftrightarrow x^2-2mx-3=0\) (1) 

Phương trình (1) có hệ số \(a.c=1.\left(-3\right)=-3< 0\) nên (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo hệ thức Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-3\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+3\left|x_2\right|=6\)

Ta có hệ: 

\(\left\{{}\begin{matrix}x_1x_2=-3\\\left|x_1\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\\left|\dfrac{3}{x_2}\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\x_2^2-2\left|x_2\right|+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2=-1,x_1=3\\x_2=1,x_1=-3\end{matrix}\right.\)

Với \(x_1=3,x_2=-1\Rightarrow x_1+x_2=2\Rightarrow m=1\).

Với \(x_1=-3,x_2=1\Rightarrow x_1+x_2=-2\Rightarrow m=-1\)

 

 

Kiều Bảo Ngọc
23 tháng 4 2022 lúc 19:37

Phương trình hoành độ giao điểm của (d) và (P) là: 

x2=2mx+3⇔x2−2mx−3=0 (1) 

Phương trình (1) có hệ số a.c=1.(−3)=−3<0 nên (1) luôn có hai nghiệm phân biệt x1,x2.

Theo hệ thức Viete ta có: 

{x1+x2=2mx1x2=−3

Ta có: |x1|+3|x2|=6

Ta có hệ: 

{x1x2=−3|x1|+3|x2|=6⇔{x1=−3x2|3x2|+3|x2|=6⇔{x1=−3x2x22−2|x2|+1=0

⇔[x2=−1,x1=3x2=1,x1=−3

Với x1=3,x2=−1⇒x1+x2=2⇒m=1.

Với x1=−3,x2=1⇒x1+x2=−2⇒m=−1

 

Nguyễn Thiện Tuấn
Xem chi tiết

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Mai Bảo Lâm
Xem chi tiết
Nhi Linh
Xem chi tiết
Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:49

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)

Kim Taehyungie
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2022 lúc 18:21

a. Bạn tự giải

b. Pt hoành độ giao điểm: \(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1-m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow1=9\left(m-1\right)\Rightarrow m=\dfrac{10}{9}\)

TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow m-1=9.1\Rightarrow m=10\)